Probabilistic Analogical Mapping With Semantic Relation Networks

The human ability to flexibly reason using analogies with domain-general content depends on mechanisms for identifying relations between concepts, and for mapping concepts and their relations across analogs. Building on a recent model of how semantic relations can be learned from nonrelational word...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological review 2022-10, Vol.129 (5), p.1078-1103
Hauptverfasser: Lu, Hongjing, Ichien, Nicholas, Holyoak, Keith J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The human ability to flexibly reason using analogies with domain-general content depends on mechanisms for identifying relations between concepts, and for mapping concepts and their relations across analogs. Building on a recent model of how semantic relations can be learned from nonrelational word embeddings, we present a new computational model of mapping between two analogs. The model adopts a Bayesian framework for probabilistic graph matching, operating on semantic relation networks constructed from distributed representations of individual concepts and of relations between concepts. Through comparisons of model predictions with human performance in a novel mapping task requiring integration of multiple relations, as well as in several classic studies, we demonstrate that the model accounts for a broad range of phenomena involving analogical mapping by both adults and children. We also show the potential for extending the model to deal with analog retrieval. Our approach demonstrates that human-like analogical mapping can emerge from comparison mechanisms applied to rich semantic representations of individual concepts and relations.
ISSN:0033-295X
1939-1471
DOI:10.1037/rev0000358