Both high glucose and phosphate overload promote senescence-associated calcification of vascular muscle cells
Purpose The NAD + -dependent deacetylase, sirtuin 1 (SIRT1), plays an important role in vascular calcification induced by high glucose and/or high phosphate levels. However, the mechanism by which SIRT1 regulates this process is still not fully understood. Thus, this study aimed to determine the rol...
Gespeichert in:
Veröffentlicht in: | International urology and nephrology 2022-10, Vol.54 (10), p.2719-2731 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
The NAD
+
-dependent deacetylase, sirtuin 1 (SIRT1), plays an important role in vascular calcification induced by high glucose and/or high phosphate levels. However, the mechanism by which SIRT1 regulates this process is still not fully understood. Thus, this study aimed to determine the role of high glucose and phosphate in vascular calcification and the molecular mechanisms underlying SIRT1 regulation.
Methods
Vascular smooth muscle cells (VSMCs) were cultured under normal, high phosphate, and/or high-glucose conditions for 9 days. Alizarin red staining and calcification content analyses were used to determine calcium deposition. VSMC senescence was detected by β-galactosidase (SA-β-Gal) staining and p21 expression.
Results
Mouse VSMCs exposed to high phosphate and high glucose in vitro showed increased calcification, which was correlated with the induction of cell senescence, as confirmed by the increased SA-β-galactosidase activity and p21 expression. SRT1720, an activator of SIRT1, inhibits p65 acetylation, the nuclear factor-κ-gene binding (NF-κB) pathway, and VSMC transdifferentiation, prevents senescence and reactive oxygen species (ROS) production, and reduces vascular calcification. In contrast, sirtinol, an inhibitor of SIRT1, increases p65 acetylation, activates the NF-κB pathway, induces vascular smooth muscle cell transdifferentiation and senescence, and promotes vascular calcification.
Conclusions
High glucose and high phosphate levels induce senescence and vascular calcification in VSMCs, and the combined effect of high glucose and phosphate can inhibit SIRT1 expression. SIRT1 inhibits vascular smooth muscle cell senescence and osteogenic differentiation by inhibiting NF-κB activity, thereby inhibiting vascular calcification. |
---|---|
ISSN: | 1573-2584 0301-1623 1573-2584 |
DOI: | 10.1007/s11255-022-03195-4 |