Spin-Holstein Models in Trapped-Ion Systems

In this work, we highlight how trapped-ion quantum systems can be used to study generalized Holstein models, and benchmark expensive numerical calculations. We study a particular spin-Holstein model that can be implemented with arrays of ions confined by individual microtraps, and that is closely re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2022-03, Vol.128 (12), p.120404-120404, Article 120404
Hauptverfasser: Knörzer, J, Shi, T, Demler, E, Cirac, J I
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we highlight how trapped-ion quantum systems can be used to study generalized Holstein models, and benchmark expensive numerical calculations. We study a particular spin-Holstein model that can be implemented with arrays of ions confined by individual microtraps, and that is closely related to the Holstein model of condensed matter physics, used to describe electron-phonon interactions. In contrast to earlier proposals, we focus on simulating many-electron systems and inspect the competition between charge-density wave order, fermion pairing, and phase separation. In our numerical study, we employ a combination of complementary approaches, based on non-Gaussian variational ansatz states and matrix product states, respectively. We demonstrate that this hybrid approach outperforms standard density-matrix renormalization group calculations.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.128.120404