Multienzyme Cascades Based on Highly Efficient Metal–Nitrogen–Carbon Nanozymes for Construction of Versatile Bioassays
Distinguished by the coupled catalysis-facilitated high turnover and admirable specificity, enzyme cascades have sparked tremendous attention in bioanalysis. However, three-enzyme cascade-based versatile platforms have rarely been explored without resorting to tedious immobilization procedures. Here...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2022-03, Vol.94 (8), p.3485-3493 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3493 |
---|---|
container_issue | 8 |
container_start_page | 3485 |
container_title | Analytical chemistry (Washington) |
container_volume | 94 |
creator | Zhang, Chenghui Chen, Chuanxia Zhao, Dan Kang, Ge Liu, Fangning Yang, Fan Lu, Yizhong Sun, Jian |
description | Distinguished by the coupled catalysis-facilitated high turnover and admirable specificity, enzyme cascades have sparked tremendous attention in bioanalysis. However, three-enzyme cascade-based versatile platforms have rarely been explored without resorting to tedious immobilization procedures. Herein, we have demonstrated that formamide-converted transition metal–nitrogen–carbon (f-MNC, M = Fe, Cu, Mn, Co, Zn) with a high loading of atomically dispersed active sites possesses intrinsic peroxidase-mimetic activity following the activity order of f-FeNC > f-CuNC > f-MnNC > f-CoNC > f-ZnNC. Ulteriorly, benefitting from the greatest catalytic performance and explicit catalytic mechanism of f-FeNC, versatile enzyme cascade-based colorimetric bioassays for ultrasensitive detection of diabetes-related glucose and α-glucosidase (α-Glu) have been unprecedentedly devised using f-FeNC-triggered chromogenic reaction of 3,3′,5,5′-tetramethylbenzidine as an amplifier. Notably, several types of α-Glu substrates can be effectively utilized in this three-enzyme cascade-based α-Glu assay, and it can be further employed for screening α-Glu inhibitors that are used as antidiabetic and antiviral drugs. These versatile assays can also be extended to detect other H2O2-generating or -consuming biomolecules and other bioenzymes that are capable of catalyzing glucose generation procedures. These nanozyme-involved multienzyme cascades without intricate enzyme-engineering techniques may provide a concept to facilitate the deployment of nanozymes in celestial versatile bioassay fabrication, disease diagnosis, and biomedicine. |
doi_str_mv | 10.1021/acs.analchem.1c04018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2648855923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635530017</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-29d2a489e7ec27225e088b0d1bd21fcce3be442dc7f5f88f615b7a44291848e63</originalsourceid><addsrcrecordid>eNqNkctu1DAUhi0EokPhDRCyxIZNhuNb4ixp1FKkXjaFbeQ4x62rJC52spiueIe-YZ-kHs20CxaIlY98vv-35I-QjwzWDDj7amxam8kM9gbHNbMggelXZMUUh6LUmr8mKwAQBa8ADsi7lG4BGANWviUHQrEKaiVW5P58GWaP0_1mRNqYZE2PiR6ZhD0NEz311zfDhh47522mZnqOsxke_zxc-DmGa5zy2JjYZfTCTGHbkqgLkTZhSnNc7OzzKjj6C2Mysx-QHvlgUjKb9J68cWZI-GF_HpKfJ8dXzWlxdvn9R_PtrDAS6rngdc-N1DVWaHnFuULQuoOedT1nzloUHUrJe1s55bR2JVNdZfJNzbTUWIpD8mXXexfD7wXT3I4-WRwGM2FYUstLqbVSNRf_gfJaaKVLmdHPf6G3YYnZx5YSSon821Wm5I6yMaQU0bV30Y8mbloG7VZjmzW2zxrbvcYc-7QvX7oR-5fQs7cMwA7Yxl8e_mfnEz_UrtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635530017</pqid></control><display><type>article</type><title>Multienzyme Cascades Based on Highly Efficient Metal–Nitrogen–Carbon Nanozymes for Construction of Versatile Bioassays</title><source>ACS Publications</source><source>MEDLINE</source><creator>Zhang, Chenghui ; Chen, Chuanxia ; Zhao, Dan ; Kang, Ge ; Liu, Fangning ; Yang, Fan ; Lu, Yizhong ; Sun, Jian</creator><creatorcontrib>Zhang, Chenghui ; Chen, Chuanxia ; Zhao, Dan ; Kang, Ge ; Liu, Fangning ; Yang, Fan ; Lu, Yizhong ; Sun, Jian</creatorcontrib><description>Distinguished by the coupled catalysis-facilitated high turnover and admirable specificity, enzyme cascades have sparked tremendous attention in bioanalysis. However, three-enzyme cascade-based versatile platforms have rarely been explored without resorting to tedious immobilization procedures. Herein, we have demonstrated that formamide-converted transition metal–nitrogen–carbon (f-MNC, M = Fe, Cu, Mn, Co, Zn) with a high loading of atomically dispersed active sites possesses intrinsic peroxidase-mimetic activity following the activity order of f-FeNC > f-CuNC > f-MnNC > f-CoNC > f-ZnNC. Ulteriorly, benefitting from the greatest catalytic performance and explicit catalytic mechanism of f-FeNC, versatile enzyme cascade-based colorimetric bioassays for ultrasensitive detection of diabetes-related glucose and α-glucosidase (α-Glu) have been unprecedentedly devised using f-FeNC-triggered chromogenic reaction of 3,3′,5,5′-tetramethylbenzidine as an amplifier. Notably, several types of α-Glu substrates can be effectively utilized in this three-enzyme cascade-based α-Glu assay, and it can be further employed for screening α-Glu inhibitors that are used as antidiabetic and antiviral drugs. These versatile assays can also be extended to detect other H2O2-generating or -consuming biomolecules and other bioenzymes that are capable of catalyzing glucose generation procedures. These nanozyme-involved multienzyme cascades without intricate enzyme-engineering techniques may provide a concept to facilitate the deployment of nanozymes in celestial versatile bioassay fabrication, disease diagnosis, and biomedicine.</description><identifier>ISSN: 0003-2700</identifier><identifier>ISSN: 1520-6882</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.1c04018</identifier><identifier>PMID: 35170953</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>analytical chemistry ; Antiviral agents ; Bioassays ; Biological Assay ; Biomolecules ; Carbon ; Carbon - chemistry ; Cascades ; Catalysis ; catalytic activity ; Chemistry ; Colorimetry ; Colorimetry - methods ; Copper ; Diabetes mellitus ; disease diagnosis ; Enzymes ; Fabrication ; Glucose ; Glucosidase ; Hydrogen Peroxide ; Immobilization ; Iron ; Manganese ; medicine ; Nitrogen ; Nitrogen - chemistry ; Peroxidase ; Substrates ; Transition metals ; Zinc ; α-Glucosidase</subject><ispartof>Analytical chemistry (Washington), 2022-03, Vol.94 (8), p.3485-3493</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Mar 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-29d2a489e7ec27225e088b0d1bd21fcce3be442dc7f5f88f615b7a44291848e63</citedby><cites>FETCH-LOGICAL-a409t-29d2a489e7ec27225e088b0d1bd21fcce3be442dc7f5f88f615b7a44291848e63</cites><orcidid>0000-0001-8964-6227 ; 0000-0002-0914-2780 ; 0000-0001-7168-0304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.1c04018$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.1c04018$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35170953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Chenghui</creatorcontrib><creatorcontrib>Chen, Chuanxia</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><creatorcontrib>Kang, Ge</creatorcontrib><creatorcontrib>Liu, Fangning</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Lu, Yizhong</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><title>Multienzyme Cascades Based on Highly Efficient Metal–Nitrogen–Carbon Nanozymes for Construction of Versatile Bioassays</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Distinguished by the coupled catalysis-facilitated high turnover and admirable specificity, enzyme cascades have sparked tremendous attention in bioanalysis. However, three-enzyme cascade-based versatile platforms have rarely been explored without resorting to tedious immobilization procedures. Herein, we have demonstrated that formamide-converted transition metal–nitrogen–carbon (f-MNC, M = Fe, Cu, Mn, Co, Zn) with a high loading of atomically dispersed active sites possesses intrinsic peroxidase-mimetic activity following the activity order of f-FeNC > f-CuNC > f-MnNC > f-CoNC > f-ZnNC. Ulteriorly, benefitting from the greatest catalytic performance and explicit catalytic mechanism of f-FeNC, versatile enzyme cascade-based colorimetric bioassays for ultrasensitive detection of diabetes-related glucose and α-glucosidase (α-Glu) have been unprecedentedly devised using f-FeNC-triggered chromogenic reaction of 3,3′,5,5′-tetramethylbenzidine as an amplifier. Notably, several types of α-Glu substrates can be effectively utilized in this three-enzyme cascade-based α-Glu assay, and it can be further employed for screening α-Glu inhibitors that are used as antidiabetic and antiviral drugs. These versatile assays can also be extended to detect other H2O2-generating or -consuming biomolecules and other bioenzymes that are capable of catalyzing glucose generation procedures. These nanozyme-involved multienzyme cascades without intricate enzyme-engineering techniques may provide a concept to facilitate the deployment of nanozymes in celestial versatile bioassay fabrication, disease diagnosis, and biomedicine.</description><subject>analytical chemistry</subject><subject>Antiviral agents</subject><subject>Bioassays</subject><subject>Biological Assay</subject><subject>Biomolecules</subject><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>Cascades</subject><subject>Catalysis</subject><subject>catalytic activity</subject><subject>Chemistry</subject><subject>Colorimetry</subject><subject>Colorimetry - methods</subject><subject>Copper</subject><subject>Diabetes mellitus</subject><subject>disease diagnosis</subject><subject>Enzymes</subject><subject>Fabrication</subject><subject>Glucose</subject><subject>Glucosidase</subject><subject>Hydrogen Peroxide</subject><subject>Immobilization</subject><subject>Iron</subject><subject>Manganese</subject><subject>medicine</subject><subject>Nitrogen</subject><subject>Nitrogen - chemistry</subject><subject>Peroxidase</subject><subject>Substrates</subject><subject>Transition metals</subject><subject>Zinc</subject><subject>α-Glucosidase</subject><issn>0003-2700</issn><issn>1520-6882</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctu1DAUhi0EokPhDRCyxIZNhuNb4ixp1FKkXjaFbeQ4x62rJC52spiueIe-YZ-kHs20CxaIlY98vv-35I-QjwzWDDj7amxam8kM9gbHNbMggelXZMUUh6LUmr8mKwAQBa8ADsi7lG4BGANWviUHQrEKaiVW5P58GWaP0_1mRNqYZE2PiR6ZhD0NEz311zfDhh47522mZnqOsxke_zxc-DmGa5zy2JjYZfTCTGHbkqgLkTZhSnNc7OzzKjj6C2Mysx-QHvlgUjKb9J68cWZI-GF_HpKfJ8dXzWlxdvn9R_PtrDAS6rngdc-N1DVWaHnFuULQuoOedT1nzloUHUrJe1s55bR2JVNdZfJNzbTUWIpD8mXXexfD7wXT3I4-WRwGM2FYUstLqbVSNRf_gfJaaKVLmdHPf6G3YYnZx5YSSon821Wm5I6yMaQU0bV30Y8mbloG7VZjmzW2zxrbvcYc-7QvX7oR-5fQs7cMwA7Yxl8e_mfnEz_UrtQ</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Zhang, Chenghui</creator><creator>Chen, Chuanxia</creator><creator>Zhao, Dan</creator><creator>Kang, Ge</creator><creator>Liu, Fangning</creator><creator>Yang, Fan</creator><creator>Lu, Yizhong</creator><creator>Sun, Jian</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-8964-6227</orcidid><orcidid>https://orcid.org/0000-0002-0914-2780</orcidid><orcidid>https://orcid.org/0000-0001-7168-0304</orcidid></search><sort><creationdate>20220301</creationdate><title>Multienzyme Cascades Based on Highly Efficient Metal–Nitrogen–Carbon Nanozymes for Construction of Versatile Bioassays</title><author>Zhang, Chenghui ; Chen, Chuanxia ; Zhao, Dan ; Kang, Ge ; Liu, Fangning ; Yang, Fan ; Lu, Yizhong ; Sun, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-29d2a489e7ec27225e088b0d1bd21fcce3be442dc7f5f88f615b7a44291848e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>analytical chemistry</topic><topic>Antiviral agents</topic><topic>Bioassays</topic><topic>Biological Assay</topic><topic>Biomolecules</topic><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>Cascades</topic><topic>Catalysis</topic><topic>catalytic activity</topic><topic>Chemistry</topic><topic>Colorimetry</topic><topic>Colorimetry - methods</topic><topic>Copper</topic><topic>Diabetes mellitus</topic><topic>disease diagnosis</topic><topic>Enzymes</topic><topic>Fabrication</topic><topic>Glucose</topic><topic>Glucosidase</topic><topic>Hydrogen Peroxide</topic><topic>Immobilization</topic><topic>Iron</topic><topic>Manganese</topic><topic>medicine</topic><topic>Nitrogen</topic><topic>Nitrogen - chemistry</topic><topic>Peroxidase</topic><topic>Substrates</topic><topic>Transition metals</topic><topic>Zinc</topic><topic>α-Glucosidase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chenghui</creatorcontrib><creatorcontrib>Chen, Chuanxia</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><creatorcontrib>Kang, Ge</creatorcontrib><creatorcontrib>Liu, Fangning</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Lu, Yizhong</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chenghui</au><au>Chen, Chuanxia</au><au>Zhao, Dan</au><au>Kang, Ge</au><au>Liu, Fangning</au><au>Yang, Fan</au><au>Lu, Yizhong</au><au>Sun, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multienzyme Cascades Based on Highly Efficient Metal–Nitrogen–Carbon Nanozymes for Construction of Versatile Bioassays</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>94</volume><issue>8</issue><spage>3485</spage><epage>3493</epage><pages>3485-3493</pages><issn>0003-2700</issn><issn>1520-6882</issn><eissn>1520-6882</eissn><abstract>Distinguished by the coupled catalysis-facilitated high turnover and admirable specificity, enzyme cascades have sparked tremendous attention in bioanalysis. However, three-enzyme cascade-based versatile platforms have rarely been explored without resorting to tedious immobilization procedures. Herein, we have demonstrated that formamide-converted transition metal–nitrogen–carbon (f-MNC, M = Fe, Cu, Mn, Co, Zn) with a high loading of atomically dispersed active sites possesses intrinsic peroxidase-mimetic activity following the activity order of f-FeNC > f-CuNC > f-MnNC > f-CoNC > f-ZnNC. Ulteriorly, benefitting from the greatest catalytic performance and explicit catalytic mechanism of f-FeNC, versatile enzyme cascade-based colorimetric bioassays for ultrasensitive detection of diabetes-related glucose and α-glucosidase (α-Glu) have been unprecedentedly devised using f-FeNC-triggered chromogenic reaction of 3,3′,5,5′-tetramethylbenzidine as an amplifier. Notably, several types of α-Glu substrates can be effectively utilized in this three-enzyme cascade-based α-Glu assay, and it can be further employed for screening α-Glu inhibitors that are used as antidiabetic and antiviral drugs. These versatile assays can also be extended to detect other H2O2-generating or -consuming biomolecules and other bioenzymes that are capable of catalyzing glucose generation procedures. These nanozyme-involved multienzyme cascades without intricate enzyme-engineering techniques may provide a concept to facilitate the deployment of nanozymes in celestial versatile bioassay fabrication, disease diagnosis, and biomedicine.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35170953</pmid><doi>10.1021/acs.analchem.1c04018</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8964-6227</orcidid><orcidid>https://orcid.org/0000-0002-0914-2780</orcidid><orcidid>https://orcid.org/0000-0001-7168-0304</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2022-03, Vol.94 (8), p.3485-3493 |
issn | 0003-2700 1520-6882 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2648855923 |
source | ACS Publications; MEDLINE |
subjects | analytical chemistry Antiviral agents Bioassays Biological Assay Biomolecules Carbon Carbon - chemistry Cascades Catalysis catalytic activity Chemistry Colorimetry Colorimetry - methods Copper Diabetes mellitus disease diagnosis Enzymes Fabrication Glucose Glucosidase Hydrogen Peroxide Immobilization Iron Manganese medicine Nitrogen Nitrogen - chemistry Peroxidase Substrates Transition metals Zinc α-Glucosidase |
title | Multienzyme Cascades Based on Highly Efficient Metal–Nitrogen–Carbon Nanozymes for Construction of Versatile Bioassays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multienzyme%20Cascades%20Based%20on%20Highly%20Efficient%20Metal%E2%80%93Nitrogen%E2%80%93Carbon%20Nanozymes%20for%20Construction%20of%20Versatile%20Bioassays&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Zhang,%20Chenghui&rft.date=2022-03-01&rft.volume=94&rft.issue=8&rft.spage=3485&rft.epage=3493&rft.pages=3485-3493&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.1c04018&rft_dat=%3Cproquest_cross%3E2635530017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635530017&rft_id=info:pmid/35170953&rfr_iscdi=true |