Highly Active and Renewable Catalytic Electrodes for Two-Electron Oxygen Reduction Reaction

This study has shown that antimony-doped tin oxide (ATO) works as a robust “renewable catalyst” for the electrochemical synthesis of hydrogen peroxide (H2O2) from water and oxygen. Antimony doping into SnO2 gives rise to remarkable electrocatalytic activity for two-electron oxygen reduction reaction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2022-04, Vol.38 (15), p.4785-4792
Hauptverfasser: Naya, Shin-ichi, Suzuki, Haruya, Kobayashi, Hisayoshi, Tada, Hiroaki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4792
container_issue 15
container_start_page 4785
container_title Langmuir
container_volume 38
creator Naya, Shin-ichi
Suzuki, Haruya
Kobayashi, Hisayoshi
Tada, Hiroaki
description This study has shown that antimony-doped tin oxide (ATO) works as a robust “renewable catalyst” for the electrochemical synthesis of hydrogen peroxide (H2O2) from water and oxygen. Antimony doping into SnO2 gives rise to remarkable electrocatalytic activity for two-electron oxygen reduction reaction (2e–-ORR) by water with a volcano-type relation between the activity and doping levels (x Sb). Density functional theory simulations highlight the importance of an isolated Sb atom of ATO inducing the high activity and selectivity for 2e–-ORR due to the effects of O2 adsorption enhancement, decrease in the activation energy, and lowering the adsorptivity of H2O2. Electrolysis by a normal three-electrode cell using ATO (x Sb = 10.2 mol %) at −0.22 V (vs reversible hydrogen electrode) stably and continuously produces H2O2 with a turnover frequency of 6.6 s–1. This remarkable activity can be maintained even after removing the surface layer of ATO by argon-ion sputtering.
doi_str_mv 10.1021/acs.langmuir.2c00659
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2648064422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648064422</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2595-6c74fd1577e4d57b5134d7284a75afb2b1553e7f2f9916da5888a5cbe5715b6c3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EoqXwDxDKkUuKX2snx6oCilSpEionDpbjOCVVHsVOKPn3pDTlyGlHq5lZ7YfQLcFTgil50MZPC11tyjZ3U2owFhCfoTEBikOIqDxHYyw5CyUXbISuvN9ijGPG40s0YsAiEALG6H2Rbz6KLpiZJv-yga7S4NVWdq-TwgZz3eiia3ITPBbWNK5OrQ-y2gXrfR0OqypYfXcbW_WxtO1L6oPSv-IaXWS68PZmmBP09vS4ni_C5er5ZT5bhppCDKEwkmcpASktT0EmQBhPJY24lqCzhCYEgFmZ0SyOiUg1RFGkwSQWJIFEGDZB98fenas_W-sbVebe2KKnY-vWKyp4hAXnlPZWfrQaV3vvbKZ2Li-16xTB6oBV9VjVCasasPaxu-FCm5Q2_QudOPYGfDQc4tu6dVX_8P-dP-tjh6I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648064422</pqid></control><display><type>article</type><title>Highly Active and Renewable Catalytic Electrodes for Two-Electron Oxygen Reduction Reaction</title><source>American Chemical Society Publications</source><creator>Naya, Shin-ichi ; Suzuki, Haruya ; Kobayashi, Hisayoshi ; Tada, Hiroaki</creator><creatorcontrib>Naya, Shin-ichi ; Suzuki, Haruya ; Kobayashi, Hisayoshi ; Tada, Hiroaki</creatorcontrib><description>This study has shown that antimony-doped tin oxide (ATO) works as a robust “renewable catalyst” for the electrochemical synthesis of hydrogen peroxide (H2O2) from water and oxygen. Antimony doping into SnO2 gives rise to remarkable electrocatalytic activity for two-electron oxygen reduction reaction (2e–-ORR) by water with a volcano-type relation between the activity and doping levels (x Sb). Density functional theory simulations highlight the importance of an isolated Sb atom of ATO inducing the high activity and selectivity for 2e–-ORR due to the effects of O2 adsorption enhancement, decrease in the activation energy, and lowering the adsorptivity of H2O2. Electrolysis by a normal three-electrode cell using ATO (x Sb = 10.2 mol %) at −0.22 V (vs reversible hydrogen electrode) stably and continuously produces H2O2 with a turnover frequency of 6.6 s–1. This remarkable activity can be maintained even after removing the surface layer of ATO by argon-ion sputtering.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.2c00659</identifier><identifier>PMID: 35385665</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2022-04, Vol.38 (15), p.4785-4792</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2595-6c74fd1577e4d57b5134d7284a75afb2b1553e7f2f9916da5888a5cbe5715b6c3</citedby><cites>FETCH-LOGICAL-a2595-6c74fd1577e4d57b5134d7284a75afb2b1553e7f2f9916da5888a5cbe5715b6c3</cites><orcidid>0000-0001-8638-0697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.2c00659$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.2c00659$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27078,27926,27927,56740,56790</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35385665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naya, Shin-ichi</creatorcontrib><creatorcontrib>Suzuki, Haruya</creatorcontrib><creatorcontrib>Kobayashi, Hisayoshi</creatorcontrib><creatorcontrib>Tada, Hiroaki</creatorcontrib><title>Highly Active and Renewable Catalytic Electrodes for Two-Electron Oxygen Reduction Reaction</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>This study has shown that antimony-doped tin oxide (ATO) works as a robust “renewable catalyst” for the electrochemical synthesis of hydrogen peroxide (H2O2) from water and oxygen. Antimony doping into SnO2 gives rise to remarkable electrocatalytic activity for two-electron oxygen reduction reaction (2e–-ORR) by water with a volcano-type relation between the activity and doping levels (x Sb). Density functional theory simulations highlight the importance of an isolated Sb atom of ATO inducing the high activity and selectivity for 2e–-ORR due to the effects of O2 adsorption enhancement, decrease in the activation energy, and lowering the adsorptivity of H2O2. Electrolysis by a normal three-electrode cell using ATO (x Sb = 10.2 mol %) at −0.22 V (vs reversible hydrogen electrode) stably and continuously produces H2O2 with a turnover frequency of 6.6 s–1. This remarkable activity can be maintained even after removing the surface layer of ATO by argon-ion sputtering.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EoqXwDxDKkUuKX2snx6oCilSpEionDpbjOCVVHsVOKPn3pDTlyGlHq5lZ7YfQLcFTgil50MZPC11tyjZ3U2owFhCfoTEBikOIqDxHYyw5CyUXbISuvN9ijGPG40s0YsAiEALG6H2Rbz6KLpiZJv-yga7S4NVWdq-TwgZz3eiia3ITPBbWNK5OrQ-y2gXrfR0OqypYfXcbW_WxtO1L6oPSv-IaXWS68PZmmBP09vS4ni_C5er5ZT5bhppCDKEwkmcpASktT0EmQBhPJY24lqCzhCYEgFmZ0SyOiUg1RFGkwSQWJIFEGDZB98fenas_W-sbVebe2KKnY-vWKyp4hAXnlPZWfrQaV3vvbKZ2Li-16xTB6oBV9VjVCasasPaxu-FCm5Q2_QudOPYGfDQc4tu6dVX_8P-dP-tjh6I</recordid><startdate>20220419</startdate><enddate>20220419</enddate><creator>Naya, Shin-ichi</creator><creator>Suzuki, Haruya</creator><creator>Kobayashi, Hisayoshi</creator><creator>Tada, Hiroaki</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8638-0697</orcidid></search><sort><creationdate>20220419</creationdate><title>Highly Active and Renewable Catalytic Electrodes for Two-Electron Oxygen Reduction Reaction</title><author>Naya, Shin-ichi ; Suzuki, Haruya ; Kobayashi, Hisayoshi ; Tada, Hiroaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2595-6c74fd1577e4d57b5134d7284a75afb2b1553e7f2f9916da5888a5cbe5715b6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naya, Shin-ichi</creatorcontrib><creatorcontrib>Suzuki, Haruya</creatorcontrib><creatorcontrib>Kobayashi, Hisayoshi</creatorcontrib><creatorcontrib>Tada, Hiroaki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naya, Shin-ichi</au><au>Suzuki, Haruya</au><au>Kobayashi, Hisayoshi</au><au>Tada, Hiroaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Active and Renewable Catalytic Electrodes for Two-Electron Oxygen Reduction Reaction</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2022-04-19</date><risdate>2022</risdate><volume>38</volume><issue>15</issue><spage>4785</spage><epage>4792</epage><pages>4785-4792</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>This study has shown that antimony-doped tin oxide (ATO) works as a robust “renewable catalyst” for the electrochemical synthesis of hydrogen peroxide (H2O2) from water and oxygen. Antimony doping into SnO2 gives rise to remarkable electrocatalytic activity for two-electron oxygen reduction reaction (2e–-ORR) by water with a volcano-type relation between the activity and doping levels (x Sb). Density functional theory simulations highlight the importance of an isolated Sb atom of ATO inducing the high activity and selectivity for 2e–-ORR due to the effects of O2 adsorption enhancement, decrease in the activation energy, and lowering the adsorptivity of H2O2. Electrolysis by a normal three-electrode cell using ATO (x Sb = 10.2 mol %) at −0.22 V (vs reversible hydrogen electrode) stably and continuously produces H2O2 with a turnover frequency of 6.6 s–1. This remarkable activity can be maintained even after removing the surface layer of ATO by argon-ion sputtering.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35385665</pmid><doi>10.1021/acs.langmuir.2c00659</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8638-0697</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2022-04, Vol.38 (15), p.4785-4792
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_2648064422
source American Chemical Society Publications
title Highly Active and Renewable Catalytic Electrodes for Two-Electron Oxygen Reduction Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T21%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Active%20and%20Renewable%20Catalytic%20Electrodes%20for%20Two-Electron%20Oxygen%20Reduction%20Reaction&rft.jtitle=Langmuir&rft.au=Naya,%20Shin-ichi&rft.date=2022-04-19&rft.volume=38&rft.issue=15&rft.spage=4785&rft.epage=4792&rft.pages=4785-4792&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.2c00659&rft_dat=%3Cproquest_cross%3E2648064422%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648064422&rft_id=info:pmid/35385665&rfr_iscdi=true