Liquid Crystal Elastomer with Integrated Soft Thermoelectrics for Shape Memory Actuation and Energy Harvesting
Liquid crystal elastomers (LCEs) have attracted tremendous interest as actuators for soft robotics due to their mechanical and shape memory properties. However, LCE actuators typically respond to thermal stimulation through active Joule heating and passive cooling, which make them difficult to contr...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2022-06, Vol.34 (23), p.e2200857-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | e2200857 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Zadan, Mason Patel, Dinesh K. Sabelhaus, Andrew P. Liao, Jiahe Wertz, Anthony Yao, Lining Majidi, Carmel |
description | Liquid crystal elastomers (LCEs) have attracted tremendous interest as actuators for soft robotics due to their mechanical and shape memory properties. However, LCE actuators typically respond to thermal stimulation through active Joule heating and passive cooling, which make them difficult to control. In this work, LCEs are combined with soft, stretchable thermoelectrics to create transducers capable of electrically controlled actuation, active cooling, and thermal‐to‐electrical energy conversion. The thermoelectric layers are composed of semiconductors embedded within a 3D printed elastomer matrix and wired together with eutectic gallium–indium (EGaIn) liquid metal interconnects. This layer is covered on both sides with LCE, which alternately heats and cools to achieve cyclical bending actuation in response to voltage‐controlled Peltier activation. Moreover, the thermoelectric layer can harvest energy from thermal gradients between the two LCE layers through the Seebeck effect, allowing for regenerative energy harvesting. As demonstrations, first, closed‐loop control of the transducer is performed to rapidly track a changing actuator position. Second, a soft robotic walker that is capable of walking toward a heat source and harvesting energy is introduced. Lastly, phototropic‐inspired autonomous deflection of the limbs toward a heat source is shown, demonstrating an additional method to increase energy recuperation efficiency for soft systems.
A liquid crystal elastomer (LCE) thermoelectric device is reported, which combining active Peltier heating and cooling of LCE, along with environmental and regenerative Seebeck energy harvesting in a 3D printed material architecture. A new method of actuating LCEs, along with a new, more efficient approach to soft robotics, is introduced. |
doi_str_mv | 10.1002/adma.202200857 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2647655415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674196385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4137-50e540a248569362fa55cea78a0acc4a035620ec8f992698468a647852d762013</originalsourceid><addsrcrecordid>eNqF0cFv2yAUBnA0bVqzdtcdJ6RddnEKGDAcoyxbK6Xaoe3ZesPPiSvbpIBX-b8fUbpO2qUnDvz4HnofIZ84W3LGxCU0AywFE4Ixo6o3ZMGV4IVkVr0lC2ZLVVgtzRn5EOMDY8xqpt-Ts1KVJhu9IOO2e5y6hq7DHBP0dNNDTH7AQJ-6tKfXY8JdgIQNvfVtond7DIPHHl0KnYu09YHe7uGA9AYHH2a6cmmC1PmRwtjQzYhhN9MrCL8xpm7cXZB3LfQRPz6f5-T---ZufVVsf_64Xq-2hZO8rArFUEkGQhqlbalFC0o5hMoAA-cksFJpwdCZ1lqhrZHagJaVUaKp8gUvz8nXU-4h-Mcpz66HLjrsexjRT7EWWWulJFeZfvmPPvgpjPl3WVWSW12ao1qelAs-xoBtfQjdAGGuOauPTdTHJuqXJvKDz8-x068Bmxf-d_UZ2BN46nqcX4mrV99uVv_C_wCgyZQa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674196385</pqid></control><display><type>article</type><title>Liquid Crystal Elastomer with Integrated Soft Thermoelectrics for Shape Memory Actuation and Energy Harvesting</title><source>Wiley Online Library All Journals</source><creator>Zadan, Mason ; Patel, Dinesh K. ; Sabelhaus, Andrew P. ; Liao, Jiahe ; Wertz, Anthony ; Yao, Lining ; Majidi, Carmel</creator><creatorcontrib>Zadan, Mason ; Patel, Dinesh K. ; Sabelhaus, Andrew P. ; Liao, Jiahe ; Wertz, Anthony ; Yao, Lining ; Majidi, Carmel</creatorcontrib><description>Liquid crystal elastomers (LCEs) have attracted tremendous interest as actuators for soft robotics due to their mechanical and shape memory properties. However, LCE actuators typically respond to thermal stimulation through active Joule heating and passive cooling, which make them difficult to control. In this work, LCEs are combined with soft, stretchable thermoelectrics to create transducers capable of electrically controlled actuation, active cooling, and thermal‐to‐electrical energy conversion. The thermoelectric layers are composed of semiconductors embedded within a 3D printed elastomer matrix and wired together with eutectic gallium–indium (EGaIn) liquid metal interconnects. This layer is covered on both sides with LCE, which alternately heats and cools to achieve cyclical bending actuation in response to voltage‐controlled Peltier activation. Moreover, the thermoelectric layer can harvest energy from thermal gradients between the two LCE layers through the Seebeck effect, allowing for regenerative energy harvesting. As demonstrations, first, closed‐loop control of the transducer is performed to rapidly track a changing actuator position. Second, a soft robotic walker that is capable of walking toward a heat source and harvesting energy is introduced. Lastly, phototropic‐inspired autonomous deflection of the limbs toward a heat source is shown, demonstrating an additional method to increase energy recuperation efficiency for soft systems.
A liquid crystal elastomer (LCE) thermoelectric device is reported, which combining active Peltier heating and cooling of LCE, along with environmental and regenerative Seebeck energy harvesting in a 3D printed material architecture. A new method of actuating LCEs, along with a new, more efficient approach to soft robotics, is introduced.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202200857</identifier><identifier>PMID: 35384096</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3D printing ; Active control ; Actuation ; Actuator position ; Cooling ; Elastomers ; Energy ; Energy conversion ; Energy harvesting ; Gallium ; liquid crystal elastomers ; Liquid crystals ; Liquid metals ; Materials science ; Ohmic dissipation ; Peltier effect ; regenerative energy harvesting ; Resistance heating ; Robotics ; Seebeck effect ; Shape memory ; soft robotic actuators ; Temperature gradients ; thermoelectric generators ; Thermoelectricity ; Three dimensional printing ; Transducers</subject><ispartof>Advanced materials (Weinheim), 2022-06, Vol.34 (23), p.e2200857-n/a</ispartof><rights>2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4137-50e540a248569362fa55cea78a0acc4a035620ec8f992698468a647852d762013</citedby><cites>FETCH-LOGICAL-c4137-50e540a248569362fa55cea78a0acc4a035620ec8f992698468a647852d762013</cites><orcidid>0000-0003-1883-2801 ; 0000-0002-3063-2696 ; 0000-0002-8842-2317 ; 0000-0001-5019-2846 ; 0000-0002-6469-9645 ; 0000-0001-5231-7964 ; 0000-0002-5718-3579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202200857$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202200857$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35384096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zadan, Mason</creatorcontrib><creatorcontrib>Patel, Dinesh K.</creatorcontrib><creatorcontrib>Sabelhaus, Andrew P.</creatorcontrib><creatorcontrib>Liao, Jiahe</creatorcontrib><creatorcontrib>Wertz, Anthony</creatorcontrib><creatorcontrib>Yao, Lining</creatorcontrib><creatorcontrib>Majidi, Carmel</creatorcontrib><title>Liquid Crystal Elastomer with Integrated Soft Thermoelectrics for Shape Memory Actuation and Energy Harvesting</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Liquid crystal elastomers (LCEs) have attracted tremendous interest as actuators for soft robotics due to their mechanical and shape memory properties. However, LCE actuators typically respond to thermal stimulation through active Joule heating and passive cooling, which make them difficult to control. In this work, LCEs are combined with soft, stretchable thermoelectrics to create transducers capable of electrically controlled actuation, active cooling, and thermal‐to‐electrical energy conversion. The thermoelectric layers are composed of semiconductors embedded within a 3D printed elastomer matrix and wired together with eutectic gallium–indium (EGaIn) liquid metal interconnects. This layer is covered on both sides with LCE, which alternately heats and cools to achieve cyclical bending actuation in response to voltage‐controlled Peltier activation. Moreover, the thermoelectric layer can harvest energy from thermal gradients between the two LCE layers through the Seebeck effect, allowing for regenerative energy harvesting. As demonstrations, first, closed‐loop control of the transducer is performed to rapidly track a changing actuator position. Second, a soft robotic walker that is capable of walking toward a heat source and harvesting energy is introduced. Lastly, phototropic‐inspired autonomous deflection of the limbs toward a heat source is shown, demonstrating an additional method to increase energy recuperation efficiency for soft systems.
A liquid crystal elastomer (LCE) thermoelectric device is reported, which combining active Peltier heating and cooling of LCE, along with environmental and regenerative Seebeck energy harvesting in a 3D printed material architecture. A new method of actuating LCEs, along with a new, more efficient approach to soft robotics, is introduced.</description><subject>3D printing</subject><subject>Active control</subject><subject>Actuation</subject><subject>Actuator position</subject><subject>Cooling</subject><subject>Elastomers</subject><subject>Energy</subject><subject>Energy conversion</subject><subject>Energy harvesting</subject><subject>Gallium</subject><subject>liquid crystal elastomers</subject><subject>Liquid crystals</subject><subject>Liquid metals</subject><subject>Materials science</subject><subject>Ohmic dissipation</subject><subject>Peltier effect</subject><subject>regenerative energy harvesting</subject><subject>Resistance heating</subject><subject>Robotics</subject><subject>Seebeck effect</subject><subject>Shape memory</subject><subject>soft robotic actuators</subject><subject>Temperature gradients</subject><subject>thermoelectric generators</subject><subject>Thermoelectricity</subject><subject>Three dimensional printing</subject><subject>Transducers</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqF0cFv2yAUBnA0bVqzdtcdJ6RddnEKGDAcoyxbK6Xaoe3ZesPPiSvbpIBX-b8fUbpO2qUnDvz4HnofIZ84W3LGxCU0AywFE4Ixo6o3ZMGV4IVkVr0lC2ZLVVgtzRn5EOMDY8xqpt-Ts1KVJhu9IOO2e5y6hq7DHBP0dNNDTH7AQJ-6tKfXY8JdgIQNvfVtond7DIPHHl0KnYu09YHe7uGA9AYHH2a6cmmC1PmRwtjQzYhhN9MrCL8xpm7cXZB3LfQRPz6f5-T---ZufVVsf_64Xq-2hZO8rArFUEkGQhqlbalFC0o5hMoAA-cksFJpwdCZ1lqhrZHagJaVUaKp8gUvz8nXU-4h-Mcpz66HLjrsexjRT7EWWWulJFeZfvmPPvgpjPl3WVWSW12ao1qelAs-xoBtfQjdAGGuOauPTdTHJuqXJvKDz8-x068Bmxf-d_UZ2BN46nqcX4mrV99uVv_C_wCgyZQa</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Zadan, Mason</creator><creator>Patel, Dinesh K.</creator><creator>Sabelhaus, Andrew P.</creator><creator>Liao, Jiahe</creator><creator>Wertz, Anthony</creator><creator>Yao, Lining</creator><creator>Majidi, Carmel</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1883-2801</orcidid><orcidid>https://orcid.org/0000-0002-3063-2696</orcidid><orcidid>https://orcid.org/0000-0002-8842-2317</orcidid><orcidid>https://orcid.org/0000-0001-5019-2846</orcidid><orcidid>https://orcid.org/0000-0002-6469-9645</orcidid><orcidid>https://orcid.org/0000-0001-5231-7964</orcidid><orcidid>https://orcid.org/0000-0002-5718-3579</orcidid></search><sort><creationdate>20220601</creationdate><title>Liquid Crystal Elastomer with Integrated Soft Thermoelectrics for Shape Memory Actuation and Energy Harvesting</title><author>Zadan, Mason ; Patel, Dinesh K. ; Sabelhaus, Andrew P. ; Liao, Jiahe ; Wertz, Anthony ; Yao, Lining ; Majidi, Carmel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4137-50e540a248569362fa55cea78a0acc4a035620ec8f992698468a647852d762013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D printing</topic><topic>Active control</topic><topic>Actuation</topic><topic>Actuator position</topic><topic>Cooling</topic><topic>Elastomers</topic><topic>Energy</topic><topic>Energy conversion</topic><topic>Energy harvesting</topic><topic>Gallium</topic><topic>liquid crystal elastomers</topic><topic>Liquid crystals</topic><topic>Liquid metals</topic><topic>Materials science</topic><topic>Ohmic dissipation</topic><topic>Peltier effect</topic><topic>regenerative energy harvesting</topic><topic>Resistance heating</topic><topic>Robotics</topic><topic>Seebeck effect</topic><topic>Shape memory</topic><topic>soft robotic actuators</topic><topic>Temperature gradients</topic><topic>thermoelectric generators</topic><topic>Thermoelectricity</topic><topic>Three dimensional printing</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zadan, Mason</creatorcontrib><creatorcontrib>Patel, Dinesh K.</creatorcontrib><creatorcontrib>Sabelhaus, Andrew P.</creatorcontrib><creatorcontrib>Liao, Jiahe</creatorcontrib><creatorcontrib>Wertz, Anthony</creatorcontrib><creatorcontrib>Yao, Lining</creatorcontrib><creatorcontrib>Majidi, Carmel</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zadan, Mason</au><au>Patel, Dinesh K.</au><au>Sabelhaus, Andrew P.</au><au>Liao, Jiahe</au><au>Wertz, Anthony</au><au>Yao, Lining</au><au>Majidi, Carmel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid Crystal Elastomer with Integrated Soft Thermoelectrics for Shape Memory Actuation and Energy Harvesting</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>34</volume><issue>23</issue><spage>e2200857</spage><epage>n/a</epage><pages>e2200857-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Liquid crystal elastomers (LCEs) have attracted tremendous interest as actuators for soft robotics due to their mechanical and shape memory properties. However, LCE actuators typically respond to thermal stimulation through active Joule heating and passive cooling, which make them difficult to control. In this work, LCEs are combined with soft, stretchable thermoelectrics to create transducers capable of electrically controlled actuation, active cooling, and thermal‐to‐electrical energy conversion. The thermoelectric layers are composed of semiconductors embedded within a 3D printed elastomer matrix and wired together with eutectic gallium–indium (EGaIn) liquid metal interconnects. This layer is covered on both sides with LCE, which alternately heats and cools to achieve cyclical bending actuation in response to voltage‐controlled Peltier activation. Moreover, the thermoelectric layer can harvest energy from thermal gradients between the two LCE layers through the Seebeck effect, allowing for regenerative energy harvesting. As demonstrations, first, closed‐loop control of the transducer is performed to rapidly track a changing actuator position. Second, a soft robotic walker that is capable of walking toward a heat source and harvesting energy is introduced. Lastly, phototropic‐inspired autonomous deflection of the limbs toward a heat source is shown, demonstrating an additional method to increase energy recuperation efficiency for soft systems.
A liquid crystal elastomer (LCE) thermoelectric device is reported, which combining active Peltier heating and cooling of LCE, along with environmental and regenerative Seebeck energy harvesting in a 3D printed material architecture. A new method of actuating LCEs, along with a new, more efficient approach to soft robotics, is introduced.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35384096</pmid><doi>10.1002/adma.202200857</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1883-2801</orcidid><orcidid>https://orcid.org/0000-0002-3063-2696</orcidid><orcidid>https://orcid.org/0000-0002-8842-2317</orcidid><orcidid>https://orcid.org/0000-0001-5019-2846</orcidid><orcidid>https://orcid.org/0000-0002-6469-9645</orcidid><orcidid>https://orcid.org/0000-0001-5231-7964</orcidid><orcidid>https://orcid.org/0000-0002-5718-3579</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-06, Vol.34 (23), p.e2200857-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2647655415 |
source | Wiley Online Library All Journals |
subjects | 3D printing Active control Actuation Actuator position Cooling Elastomers Energy Energy conversion Energy harvesting Gallium liquid crystal elastomers Liquid crystals Liquid metals Materials science Ohmic dissipation Peltier effect regenerative energy harvesting Resistance heating Robotics Seebeck effect Shape memory soft robotic actuators Temperature gradients thermoelectric generators Thermoelectricity Three dimensional printing Transducers |
title | Liquid Crystal Elastomer with Integrated Soft Thermoelectrics for Shape Memory Actuation and Energy Harvesting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20Crystal%20Elastomer%20with%20Integrated%20Soft%20Thermoelectrics%20for%20Shape%20Memory%20Actuation%20and%20Energy%20Harvesting&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zadan,%20Mason&rft.date=2022-06-01&rft.volume=34&rft.issue=23&rft.spage=e2200857&rft.epage=n/a&rft.pages=e2200857-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202200857&rft_dat=%3Cproquest_cross%3E2674196385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674196385&rft_id=info:pmid/35384096&rfr_iscdi=true |