Enhancing the Photoelectrochemical Hydrogen Evolution Reaction through Nanoscrolling of Two-Dimensional Material Heterojunctions

The clean production of hydrogen from water using sunlight has emerged as a sustainable alternative toward large-scale energy generation and storage. However, designing photoactive semiconductors that are suitable for both light harvesting and water splitting is a pivotal challenge. Atomically thin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2022-04, Vol.16 (4), p.5743-5751
Hauptverfasser: Ghosh, Rapti, Singh, Mukesh, Chang, Li Wei, Lin, Hung-I, Chen, Yu Siang, Muthu, Jeyavelan, Papnai, Bhartendu, Kang, Yi Sun, Liao, Yu-Ming, Bera, Krishna Prasad, Guo, Guang-Yu, Hsieh, Ya-Ping, Hofmann, Mario, Chen, Yang-Fang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5751
container_issue 4
container_start_page 5743
container_title ACS nano
container_volume 16
creator Ghosh, Rapti
Singh, Mukesh
Chang, Li Wei
Lin, Hung-I
Chen, Yu Siang
Muthu, Jeyavelan
Papnai, Bhartendu
Kang, Yi Sun
Liao, Yu-Ming
Bera, Krishna Prasad
Guo, Guang-Yu
Hsieh, Ya-Ping
Hofmann, Mario
Chen, Yang-Fang
description The clean production of hydrogen from water using sunlight has emerged as a sustainable alternative toward large-scale energy generation and storage. However, designing photoactive semiconductors that are suitable for both light harvesting and water splitting is a pivotal challenge. Atomically thin transition metal dichalcogenides (TMD) are considered as promising photocatalysts because of their wide range of available electronic properties and compositional variability. However, trade-offs between carrier transport efficiency, light absorption, and electrochemical reactivity have limited their prospects. We here combine two approaches that synergistically enhance the efficiency of photocarrier generation and electrocatalytic efficiency of two-dimensional (2D) TMDs. The arrangement of monolayer WS2 and MoS2 into a heterojunction and subsequent nanostructuring into a nanoscroll (NS) yields significant modifications of fundamental properties from its constituents. Spectroscopic characterization and ab initio simulation demonstrate the beneficial effects of straining and wall interactions on the band structure of such a heterojunction-NS that enhance the electrochemical reaction rate by an order of magnitude compared to planar heterojunctions. Phototrapping in this NS further increases the light–matter interaction and yields superior photocatalytic performance compared to previously reported 2D material catalysts and is comparable to noble-metal catalyst systems in the photoelectrochemical hydrogen evolution reaction (PEC-HER) process. Our approach highlights the potential of morphologically varied TMD-based catalysts for PEC-HER.
doi_str_mv 10.1021/acsnano.1c10772
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2647214154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647214154</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-c65781cc0cb8e7b965ce068492a5eae20be9046a8998de36552162b479291d7a3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqUws6GMSCit7SR2PKJSKFL5ECoSW-S41yZVYhc7AXXjp-N-0I3p3uG5R3cvQpcE9wmmZCCV01KbPlEEc06PUJeIiIU4ZR_Hh5yQDjpzbolxwlPOTlEnSiLOGY676GekC6lVqRdBU0DwWpjGQAWqsUYVUJdKVsF4PbNmAToYfZmqbUqjgzeQahuawpp2UQTP_gqnrKmqjcrMg-m3Ce_KGrTzmJc8yQZsubGBD2bZ6q3AnaOTuawcXOxnD73fj6bDcTh5eXgc3k5CGQnRhIr524lSWOUp8FywRAFmaSyoTEACxTkIHDOZCpHOIGJJQgmjecwFFWTGZdRD1zvvyprPFlyT1aVTUFVSg2ldRlnMKYlJEnt0sEP9P85ZmGcrW9bSrjOCs03t2b72bF-737jay9u8htmB_-vZAzc7wG9mS9NaX4n7V_cLuB6RCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647214154</pqid></control><display><type>article</type><title>Enhancing the Photoelectrochemical Hydrogen Evolution Reaction through Nanoscrolling of Two-Dimensional Material Heterojunctions</title><source>ACS Publications</source><creator>Ghosh, Rapti ; Singh, Mukesh ; Chang, Li Wei ; Lin, Hung-I ; Chen, Yu Siang ; Muthu, Jeyavelan ; Papnai, Bhartendu ; Kang, Yi Sun ; Liao, Yu-Ming ; Bera, Krishna Prasad ; Guo, Guang-Yu ; Hsieh, Ya-Ping ; Hofmann, Mario ; Chen, Yang-Fang</creator><creatorcontrib>Ghosh, Rapti ; Singh, Mukesh ; Chang, Li Wei ; Lin, Hung-I ; Chen, Yu Siang ; Muthu, Jeyavelan ; Papnai, Bhartendu ; Kang, Yi Sun ; Liao, Yu-Ming ; Bera, Krishna Prasad ; Guo, Guang-Yu ; Hsieh, Ya-Ping ; Hofmann, Mario ; Chen, Yang-Fang</creatorcontrib><description>The clean production of hydrogen from water using sunlight has emerged as a sustainable alternative toward large-scale energy generation and storage. However, designing photoactive semiconductors that are suitable for both light harvesting and water splitting is a pivotal challenge. Atomically thin transition metal dichalcogenides (TMD) are considered as promising photocatalysts because of their wide range of available electronic properties and compositional variability. However, trade-offs between carrier transport efficiency, light absorption, and electrochemical reactivity have limited their prospects. We here combine two approaches that synergistically enhance the efficiency of photocarrier generation and electrocatalytic efficiency of two-dimensional (2D) TMDs. The arrangement of monolayer WS2 and MoS2 into a heterojunction and subsequent nanostructuring into a nanoscroll (NS) yields significant modifications of fundamental properties from its constituents. Spectroscopic characterization and ab initio simulation demonstrate the beneficial effects of straining and wall interactions on the band structure of such a heterojunction-NS that enhance the electrochemical reaction rate by an order of magnitude compared to planar heterojunctions. Phototrapping in this NS further increases the light–matter interaction and yields superior photocatalytic performance compared to previously reported 2D material catalysts and is comparable to noble-metal catalyst systems in the photoelectrochemical hydrogen evolution reaction (PEC-HER) process. Our approach highlights the potential of morphologically varied TMD-based catalysts for PEC-HER.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c10772</identifier><identifier>PMID: 35377604</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2022-04, Vol.16 (4), p.5743-5751</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-c65781cc0cb8e7b965ce068492a5eae20be9046a8998de36552162b479291d7a3</citedby><cites>FETCH-LOGICAL-a399t-c65781cc0cb8e7b965ce068492a5eae20be9046a8998de36552162b479291d7a3</cites><orcidid>0000-0003-1203-5115 ; 0000-0001-9849-3138 ; 0000-0002-0999-6217 ; 0000-0002-6065-751X ; 0000-0003-1946-2478 ; 0000-0002-8696-7313</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c10772$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c10772$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35377604$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghosh, Rapti</creatorcontrib><creatorcontrib>Singh, Mukesh</creatorcontrib><creatorcontrib>Chang, Li Wei</creatorcontrib><creatorcontrib>Lin, Hung-I</creatorcontrib><creatorcontrib>Chen, Yu Siang</creatorcontrib><creatorcontrib>Muthu, Jeyavelan</creatorcontrib><creatorcontrib>Papnai, Bhartendu</creatorcontrib><creatorcontrib>Kang, Yi Sun</creatorcontrib><creatorcontrib>Liao, Yu-Ming</creatorcontrib><creatorcontrib>Bera, Krishna Prasad</creatorcontrib><creatorcontrib>Guo, Guang-Yu</creatorcontrib><creatorcontrib>Hsieh, Ya-Ping</creatorcontrib><creatorcontrib>Hofmann, Mario</creatorcontrib><creatorcontrib>Chen, Yang-Fang</creatorcontrib><title>Enhancing the Photoelectrochemical Hydrogen Evolution Reaction through Nanoscrolling of Two-Dimensional Material Heterojunctions</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The clean production of hydrogen from water using sunlight has emerged as a sustainable alternative toward large-scale energy generation and storage. However, designing photoactive semiconductors that are suitable for both light harvesting and water splitting is a pivotal challenge. Atomically thin transition metal dichalcogenides (TMD) are considered as promising photocatalysts because of their wide range of available electronic properties and compositional variability. However, trade-offs between carrier transport efficiency, light absorption, and electrochemical reactivity have limited their prospects. We here combine two approaches that synergistically enhance the efficiency of photocarrier generation and electrocatalytic efficiency of two-dimensional (2D) TMDs. The arrangement of monolayer WS2 and MoS2 into a heterojunction and subsequent nanostructuring into a nanoscroll (NS) yields significant modifications of fundamental properties from its constituents. Spectroscopic characterization and ab initio simulation demonstrate the beneficial effects of straining and wall interactions on the band structure of such a heterojunction-NS that enhance the electrochemical reaction rate by an order of magnitude compared to planar heterojunctions. Phototrapping in this NS further increases the light–matter interaction and yields superior photocatalytic performance compared to previously reported 2D material catalysts and is comparable to noble-metal catalyst systems in the photoelectrochemical hydrogen evolution reaction (PEC-HER) process. Our approach highlights the potential of morphologically varied TMD-based catalysts for PEC-HER.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EoqUws6GMSCit7SR2PKJSKFL5ECoSW-S41yZVYhc7AXXjp-N-0I3p3uG5R3cvQpcE9wmmZCCV01KbPlEEc06PUJeIiIU4ZR_Hh5yQDjpzbolxwlPOTlEnSiLOGY676GekC6lVqRdBU0DwWpjGQAWqsUYVUJdKVsF4PbNmAToYfZmqbUqjgzeQahuawpp2UQTP_gqnrKmqjcrMg-m3Ce_KGrTzmJc8yQZsubGBD2bZ6q3AnaOTuawcXOxnD73fj6bDcTh5eXgc3k5CGQnRhIr524lSWOUp8FywRAFmaSyoTEACxTkIHDOZCpHOIGJJQgmjecwFFWTGZdRD1zvvyprPFlyT1aVTUFVSg2ldRlnMKYlJEnt0sEP9P85ZmGcrW9bSrjOCs03t2b72bF-737jay9u8htmB_-vZAzc7wG9mS9NaX4n7V_cLuB6RCA</recordid><startdate>20220426</startdate><enddate>20220426</enddate><creator>Ghosh, Rapti</creator><creator>Singh, Mukesh</creator><creator>Chang, Li Wei</creator><creator>Lin, Hung-I</creator><creator>Chen, Yu Siang</creator><creator>Muthu, Jeyavelan</creator><creator>Papnai, Bhartendu</creator><creator>Kang, Yi Sun</creator><creator>Liao, Yu-Ming</creator><creator>Bera, Krishna Prasad</creator><creator>Guo, Guang-Yu</creator><creator>Hsieh, Ya-Ping</creator><creator>Hofmann, Mario</creator><creator>Chen, Yang-Fang</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1203-5115</orcidid><orcidid>https://orcid.org/0000-0001-9849-3138</orcidid><orcidid>https://orcid.org/0000-0002-0999-6217</orcidid><orcidid>https://orcid.org/0000-0002-6065-751X</orcidid><orcidid>https://orcid.org/0000-0003-1946-2478</orcidid><orcidid>https://orcid.org/0000-0002-8696-7313</orcidid></search><sort><creationdate>20220426</creationdate><title>Enhancing the Photoelectrochemical Hydrogen Evolution Reaction through Nanoscrolling of Two-Dimensional Material Heterojunctions</title><author>Ghosh, Rapti ; Singh, Mukesh ; Chang, Li Wei ; Lin, Hung-I ; Chen, Yu Siang ; Muthu, Jeyavelan ; Papnai, Bhartendu ; Kang, Yi Sun ; Liao, Yu-Ming ; Bera, Krishna Prasad ; Guo, Guang-Yu ; Hsieh, Ya-Ping ; Hofmann, Mario ; Chen, Yang-Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-c65781cc0cb8e7b965ce068492a5eae20be9046a8998de36552162b479291d7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Rapti</creatorcontrib><creatorcontrib>Singh, Mukesh</creatorcontrib><creatorcontrib>Chang, Li Wei</creatorcontrib><creatorcontrib>Lin, Hung-I</creatorcontrib><creatorcontrib>Chen, Yu Siang</creatorcontrib><creatorcontrib>Muthu, Jeyavelan</creatorcontrib><creatorcontrib>Papnai, Bhartendu</creatorcontrib><creatorcontrib>Kang, Yi Sun</creatorcontrib><creatorcontrib>Liao, Yu-Ming</creatorcontrib><creatorcontrib>Bera, Krishna Prasad</creatorcontrib><creatorcontrib>Guo, Guang-Yu</creatorcontrib><creatorcontrib>Hsieh, Ya-Ping</creatorcontrib><creatorcontrib>Hofmann, Mario</creatorcontrib><creatorcontrib>Chen, Yang-Fang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Rapti</au><au>Singh, Mukesh</au><au>Chang, Li Wei</au><au>Lin, Hung-I</au><au>Chen, Yu Siang</au><au>Muthu, Jeyavelan</au><au>Papnai, Bhartendu</au><au>Kang, Yi Sun</au><au>Liao, Yu-Ming</au><au>Bera, Krishna Prasad</au><au>Guo, Guang-Yu</au><au>Hsieh, Ya-Ping</au><au>Hofmann, Mario</au><au>Chen, Yang-Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the Photoelectrochemical Hydrogen Evolution Reaction through Nanoscrolling of Two-Dimensional Material Heterojunctions</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-04-26</date><risdate>2022</risdate><volume>16</volume><issue>4</issue><spage>5743</spage><epage>5751</epage><pages>5743-5751</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The clean production of hydrogen from water using sunlight has emerged as a sustainable alternative toward large-scale energy generation and storage. However, designing photoactive semiconductors that are suitable for both light harvesting and water splitting is a pivotal challenge. Atomically thin transition metal dichalcogenides (TMD) are considered as promising photocatalysts because of their wide range of available electronic properties and compositional variability. However, trade-offs between carrier transport efficiency, light absorption, and electrochemical reactivity have limited their prospects. We here combine two approaches that synergistically enhance the efficiency of photocarrier generation and electrocatalytic efficiency of two-dimensional (2D) TMDs. The arrangement of monolayer WS2 and MoS2 into a heterojunction and subsequent nanostructuring into a nanoscroll (NS) yields significant modifications of fundamental properties from its constituents. Spectroscopic characterization and ab initio simulation demonstrate the beneficial effects of straining and wall interactions on the band structure of such a heterojunction-NS that enhance the electrochemical reaction rate by an order of magnitude compared to planar heterojunctions. Phototrapping in this NS further increases the light–matter interaction and yields superior photocatalytic performance compared to previously reported 2D material catalysts and is comparable to noble-metal catalyst systems in the photoelectrochemical hydrogen evolution reaction (PEC-HER) process. Our approach highlights the potential of morphologically varied TMD-based catalysts for PEC-HER.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35377604</pmid><doi>10.1021/acsnano.1c10772</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1203-5115</orcidid><orcidid>https://orcid.org/0000-0001-9849-3138</orcidid><orcidid>https://orcid.org/0000-0002-0999-6217</orcidid><orcidid>https://orcid.org/0000-0002-6065-751X</orcidid><orcidid>https://orcid.org/0000-0003-1946-2478</orcidid><orcidid>https://orcid.org/0000-0002-8696-7313</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2022-04, Vol.16 (4), p.5743-5751
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2647214154
source ACS Publications
title Enhancing the Photoelectrochemical Hydrogen Evolution Reaction through Nanoscrolling of Two-Dimensional Material Heterojunctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20Photoelectrochemical%20Hydrogen%20Evolution%20Reaction%20through%20Nanoscrolling%20of%20Two-Dimensional%20Material%20Heterojunctions&rft.jtitle=ACS%20nano&rft.au=Ghosh,%20Rapti&rft.date=2022-04-26&rft.volume=16&rft.issue=4&rft.spage=5743&rft.epage=5751&rft.pages=5743-5751&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c10772&rft_dat=%3Cproquest_cross%3E2647214154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647214154&rft_id=info:pmid/35377604&rfr_iscdi=true