A split prime editor with untethered reverse transcriptase and circular RNA template

Delivery and optimization of prime editors (PEs) have been hampered by their large size and complexity. Although split versions of genome-editing tools can reduce construct size, they require special engineering to tether the binding and catalytic domains. Here we report a split PE (sPE) in which th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2022-09, Vol.40 (9), p.1388-1393
Hauptverfasser: Liu, Bin, Dong, Xiaolong, Cheng, Haoyang, Zheng, Chunwei, Chen, Zexiang, Rodríguez, Tomás C., Liang, Shun-Qing, Xue, Wen, Sontheimer, Erik J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1393
container_issue 9
container_start_page 1388
container_title Nature biotechnology
container_volume 40
creator Liu, Bin
Dong, Xiaolong
Cheng, Haoyang
Zheng, Chunwei
Chen, Zexiang
Rodríguez, Tomás C.
Liang, Shun-Qing
Xue, Wen
Sontheimer, Erik J.
description Delivery and optimization of prime editors (PEs) have been hampered by their large size and complexity. Although split versions of genome-editing tools can reduce construct size, they require special engineering to tether the binding and catalytic domains. Here we report a split PE (sPE) in which the Cas9 nickase (nCas9) remains untethered from the reverse transcriptase (RT). The sPE showed similar efficiencies in installing precise edits as the parental unsplit PE3 and no increase in insertion–deletion (indel) byproducts. Delivery of sPE to the mouse liver with hydrodynamic injection to modify β-catenin drove tumor formation with similar efficiency as PE3. Delivery with two adeno-associated virus (AAV) vectors corrected the disease-causing mutation in a mouse model of type I tyrosinemia. Similarly, prime editing guide RNAs (pegRNAs) can be split into a single guide RNA (sgRNA) and a circular RNA RT template to increase flexibility and stability. Compared to previous sPEs, ours lacks inteins, protein–protein affinity modules and nuclease-sensitive pegRNA extensions, which increase construct complexity and might reduce efficiency. Our modular system will facilitate the delivery and optimization of PEs. A split prime editor simplifies delivery.
doi_str_mv 10.1038/s41587-022-01255-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2647209932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647209932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-a8b5c389965be0543c2c223c0184b7ee433c77c6158876a41e3fff518254b1143</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWqt_wIMEvHhZzXd2j6X4BUVB6jlk01m7st1dk6zivze1VcGDpyTMM-9MHoROKLmghOeXQVCZ64wwlhHKpMyKHTSiUqiMqkLtpjtZl6lUB-gwhBdCiBJK7aMDLrkuCsVGaD7BoW_qiHtfrwDDoo6dx-91XOKhjRCX4GGBPbyBD4Cjt21wvu6jTS_bLrCrvRsa6_Hj_QRHWPWNjXCE9irbBDjenmP0dH01n95ms4ebu-lkljmuZcxsXkrH87SILIFIwR1zjHFHaC5KDSA4d1o7lX6Za2UFBV5VlaQ5k6KkVPAxOt_k9r57HSBEs6qDg6axLXRDMEwJzUhRcJbQsz_oSzf4Nm1nmKaM0pwrnSi2oZzvQvBQmbUW6z8MJWbt3Gycm-TcfDk3RWo63UYP5QoWPy3fkhPAN0BIpfYZ_O_sf2I_ATdLiyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712118367</pqid></control><display><type>article</type><title>A split prime editor with untethered reverse transcriptase and circular RNA template</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Liu, Bin ; Dong, Xiaolong ; Cheng, Haoyang ; Zheng, Chunwei ; Chen, Zexiang ; Rodríguez, Tomás C. ; Liang, Shun-Qing ; Xue, Wen ; Sontheimer, Erik J.</creator><creatorcontrib>Liu, Bin ; Dong, Xiaolong ; Cheng, Haoyang ; Zheng, Chunwei ; Chen, Zexiang ; Rodríguez, Tomás C. ; Liang, Shun-Qing ; Xue, Wen ; Sontheimer, Erik J.</creatorcontrib><description>Delivery and optimization of prime editors (PEs) have been hampered by their large size and complexity. Although split versions of genome-editing tools can reduce construct size, they require special engineering to tether the binding and catalytic domains. Here we report a split PE (sPE) in which the Cas9 nickase (nCas9) remains untethered from the reverse transcriptase (RT). The sPE showed similar efficiencies in installing precise edits as the parental unsplit PE3 and no increase in insertion–deletion (indel) byproducts. Delivery of sPE to the mouse liver with hydrodynamic injection to modify β-catenin drove tumor formation with similar efficiency as PE3. Delivery with two adeno-associated virus (AAV) vectors corrected the disease-causing mutation in a mouse model of type I tyrosinemia. Similarly, prime editing guide RNAs (pegRNAs) can be split into a single guide RNA (sgRNA) and a circular RNA RT template to increase flexibility and stability. Compared to previous sPEs, ours lacks inteins, protein–protein affinity modules and nuclease-sensitive pegRNA extensions, which increase construct complexity and might reduce efficiency. Our modular system will facilitate the delivery and optimization of PEs. A split prime editor simplifies delivery.</description><identifier>ISSN: 1087-0156</identifier><identifier>ISSN: 1546-1696</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-022-01255-9</identifier><identifier>PMID: 35379962</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/1511 ; 692/308/2056 ; Agriculture ; Animals ; Binding sites ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Circular RNA ; Complexity ; CRISPR-Cas Systems ; Deoxyribonuclease I - genetics ; Editing ; Efficiency ; Gene Editing ; Genome editing ; Genomes ; Insertion ; Inteins ; Life Sciences ; Medical schools ; Mice ; Modular construction ; Modular systems ; Mutation ; Nuclease ; Optimization ; Plasmids ; Protein structure ; Proteins ; Ribonucleic acid ; RNA ; RNA, Circular - genetics ; RNA, Guide, CRISPR-Cas Systems ; RNA-directed DNA polymerase ; RNA-Directed DNA Polymerase - genetics ; Tumors ; Tyrosinemias - genetics ; β-Catenin</subject><ispartof>Nature biotechnology, 2022-09, Vol.40 (9), p.1388-1393</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-a8b5c389965be0543c2c223c0184b7ee433c77c6158876a41e3fff518254b1143</citedby><cites>FETCH-LOGICAL-c375t-a8b5c389965be0543c2c223c0184b7ee433c77c6158876a41e3fff518254b1143</cites><orcidid>0000-0003-3313-9853 ; 0000-0002-9797-8042 ; 0000-0002-0881-0310 ; 0000-0002-1584-2417 ; 0000-0002-8724-5427 ; 0000-0002-3168-8456</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41587-022-01255-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41587-022-01255-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35379962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Dong, Xiaolong</creatorcontrib><creatorcontrib>Cheng, Haoyang</creatorcontrib><creatorcontrib>Zheng, Chunwei</creatorcontrib><creatorcontrib>Chen, Zexiang</creatorcontrib><creatorcontrib>Rodríguez, Tomás C.</creatorcontrib><creatorcontrib>Liang, Shun-Qing</creatorcontrib><creatorcontrib>Xue, Wen</creatorcontrib><creatorcontrib>Sontheimer, Erik J.</creatorcontrib><title>A split prime editor with untethered reverse transcriptase and circular RNA template</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Delivery and optimization of prime editors (PEs) have been hampered by their large size and complexity. Although split versions of genome-editing tools can reduce construct size, they require special engineering to tether the binding and catalytic domains. Here we report a split PE (sPE) in which the Cas9 nickase (nCas9) remains untethered from the reverse transcriptase (RT). The sPE showed similar efficiencies in installing precise edits as the parental unsplit PE3 and no increase in insertion–deletion (indel) byproducts. Delivery of sPE to the mouse liver with hydrodynamic injection to modify β-catenin drove tumor formation with similar efficiency as PE3. Delivery with two adeno-associated virus (AAV) vectors corrected the disease-causing mutation in a mouse model of type I tyrosinemia. Similarly, prime editing guide RNAs (pegRNAs) can be split into a single guide RNA (sgRNA) and a circular RNA RT template to increase flexibility and stability. Compared to previous sPEs, ours lacks inteins, protein–protein affinity modules and nuclease-sensitive pegRNA extensions, which increase construct complexity and might reduce efficiency. Our modular system will facilitate the delivery and optimization of PEs. A split prime editor simplifies delivery.</description><subject>631/1647/1511</subject><subject>692/308/2056</subject><subject>Agriculture</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Circular RNA</subject><subject>Complexity</subject><subject>CRISPR-Cas Systems</subject><subject>Deoxyribonuclease I - genetics</subject><subject>Editing</subject><subject>Efficiency</subject><subject>Gene Editing</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Insertion</subject><subject>Inteins</subject><subject>Life Sciences</subject><subject>Medical schools</subject><subject>Mice</subject><subject>Modular construction</subject><subject>Modular systems</subject><subject>Mutation</subject><subject>Nuclease</subject><subject>Optimization</subject><subject>Plasmids</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Circular - genetics</subject><subject>RNA, Guide, CRISPR-Cas Systems</subject><subject>RNA-directed DNA polymerase</subject><subject>RNA-Directed DNA Polymerase - genetics</subject><subject>Tumors</subject><subject>Tyrosinemias - genetics</subject><subject>β-Catenin</subject><issn>1087-0156</issn><issn>1546-1696</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWqt_wIMEvHhZzXd2j6X4BUVB6jlk01m7st1dk6zivze1VcGDpyTMM-9MHoROKLmghOeXQVCZ64wwlhHKpMyKHTSiUqiMqkLtpjtZl6lUB-gwhBdCiBJK7aMDLrkuCsVGaD7BoW_qiHtfrwDDoo6dx-91XOKhjRCX4GGBPbyBD4Cjt21wvu6jTS_bLrCrvRsa6_Hj_QRHWPWNjXCE9irbBDjenmP0dH01n95ms4ebu-lkljmuZcxsXkrH87SILIFIwR1zjHFHaC5KDSA4d1o7lX6Za2UFBV5VlaQ5k6KkVPAxOt_k9r57HSBEs6qDg6axLXRDMEwJzUhRcJbQsz_oSzf4Nm1nmKaM0pwrnSi2oZzvQvBQmbUW6z8MJWbt3Gycm-TcfDk3RWo63UYP5QoWPy3fkhPAN0BIpfYZ_O_sf2I_ATdLiyg</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Liu, Bin</creator><creator>Dong, Xiaolong</creator><creator>Cheng, Haoyang</creator><creator>Zheng, Chunwei</creator><creator>Chen, Zexiang</creator><creator>Rodríguez, Tomás C.</creator><creator>Liang, Shun-Qing</creator><creator>Xue, Wen</creator><creator>Sontheimer, Erik J.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3313-9853</orcidid><orcidid>https://orcid.org/0000-0002-9797-8042</orcidid><orcidid>https://orcid.org/0000-0002-0881-0310</orcidid><orcidid>https://orcid.org/0000-0002-1584-2417</orcidid><orcidid>https://orcid.org/0000-0002-8724-5427</orcidid><orcidid>https://orcid.org/0000-0002-3168-8456</orcidid></search><sort><creationdate>20220901</creationdate><title>A split prime editor with untethered reverse transcriptase and circular RNA template</title><author>Liu, Bin ; Dong, Xiaolong ; Cheng, Haoyang ; Zheng, Chunwei ; Chen, Zexiang ; Rodríguez, Tomás C. ; Liang, Shun-Qing ; Xue, Wen ; Sontheimer, Erik J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-a8b5c389965be0543c2c223c0184b7ee433c77c6158876a41e3fff518254b1143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/1647/1511</topic><topic>692/308/2056</topic><topic>Agriculture</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Circular RNA</topic><topic>Complexity</topic><topic>CRISPR-Cas Systems</topic><topic>Deoxyribonuclease I - genetics</topic><topic>Editing</topic><topic>Efficiency</topic><topic>Gene Editing</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Insertion</topic><topic>Inteins</topic><topic>Life Sciences</topic><topic>Medical schools</topic><topic>Mice</topic><topic>Modular construction</topic><topic>Modular systems</topic><topic>Mutation</topic><topic>Nuclease</topic><topic>Optimization</topic><topic>Plasmids</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Circular - genetics</topic><topic>RNA, Guide, CRISPR-Cas Systems</topic><topic>RNA-directed DNA polymerase</topic><topic>RNA-Directed DNA Polymerase - genetics</topic><topic>Tumors</topic><topic>Tyrosinemias - genetics</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Dong, Xiaolong</creatorcontrib><creatorcontrib>Cheng, Haoyang</creatorcontrib><creatorcontrib>Zheng, Chunwei</creatorcontrib><creatorcontrib>Chen, Zexiang</creatorcontrib><creatorcontrib>Rodríguez, Tomás C.</creatorcontrib><creatorcontrib>Liang, Shun-Qing</creatorcontrib><creatorcontrib>Xue, Wen</creatorcontrib><creatorcontrib>Sontheimer, Erik J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Bin</au><au>Dong, Xiaolong</au><au>Cheng, Haoyang</au><au>Zheng, Chunwei</au><au>Chen, Zexiang</au><au>Rodríguez, Tomás C.</au><au>Liang, Shun-Qing</au><au>Xue, Wen</au><au>Sontheimer, Erik J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A split prime editor with untethered reverse transcriptase and circular RNA template</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>40</volume><issue>9</issue><spage>1388</spage><epage>1393</epage><pages>1388-1393</pages><issn>1087-0156</issn><issn>1546-1696</issn><eissn>1546-1696</eissn><abstract>Delivery and optimization of prime editors (PEs) have been hampered by their large size and complexity. Although split versions of genome-editing tools can reduce construct size, they require special engineering to tether the binding and catalytic domains. Here we report a split PE (sPE) in which the Cas9 nickase (nCas9) remains untethered from the reverse transcriptase (RT). The sPE showed similar efficiencies in installing precise edits as the parental unsplit PE3 and no increase in insertion–deletion (indel) byproducts. Delivery of sPE to the mouse liver with hydrodynamic injection to modify β-catenin drove tumor formation with similar efficiency as PE3. Delivery with two adeno-associated virus (AAV) vectors corrected the disease-causing mutation in a mouse model of type I tyrosinemia. Similarly, prime editing guide RNAs (pegRNAs) can be split into a single guide RNA (sgRNA) and a circular RNA RT template to increase flexibility and stability. Compared to previous sPEs, ours lacks inteins, protein–protein affinity modules and nuclease-sensitive pegRNA extensions, which increase construct complexity and might reduce efficiency. Our modular system will facilitate the delivery and optimization of PEs. A split prime editor simplifies delivery.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>35379962</pmid><doi>10.1038/s41587-022-01255-9</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3313-9853</orcidid><orcidid>https://orcid.org/0000-0002-9797-8042</orcidid><orcidid>https://orcid.org/0000-0002-0881-0310</orcidid><orcidid>https://orcid.org/0000-0002-1584-2417</orcidid><orcidid>https://orcid.org/0000-0002-8724-5427</orcidid><orcidid>https://orcid.org/0000-0002-3168-8456</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2022-09, Vol.40 (9), p.1388-1393
issn 1087-0156
1546-1696
1546-1696
language eng
recordid cdi_proquest_miscellaneous_2647209932
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 631/1647/1511
692/308/2056
Agriculture
Animals
Binding sites
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Circular RNA
Complexity
CRISPR-Cas Systems
Deoxyribonuclease I - genetics
Editing
Efficiency
Gene Editing
Genome editing
Genomes
Insertion
Inteins
Life Sciences
Medical schools
Mice
Modular construction
Modular systems
Mutation
Nuclease
Optimization
Plasmids
Protein structure
Proteins
Ribonucleic acid
RNA
RNA, Circular - genetics
RNA, Guide, CRISPR-Cas Systems
RNA-directed DNA polymerase
RNA-Directed DNA Polymerase - genetics
Tumors
Tyrosinemias - genetics
β-Catenin
title A split prime editor with untethered reverse transcriptase and circular RNA template
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A46%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20split%20prime%20editor%20with%20untethered%20reverse%20transcriptase%20and%20circular%20RNA%20template&rft.jtitle=Nature%20biotechnology&rft.au=Liu,%20Bin&rft.date=2022-09-01&rft.volume=40&rft.issue=9&rft.spage=1388&rft.epage=1393&rft.pages=1388-1393&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-022-01255-9&rft_dat=%3Cproquest_cross%3E2647209932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712118367&rft_id=info:pmid/35379962&rfr_iscdi=true