Substitution-inert polynuclear platinum complexes and Glycosaminoglycans: A molecular dynamics study of its non-covalent interactions

An impressive class of formally substitution-inert polynuclear platinum complexes known as Substitution-inert Polynuclear Platinum (II) Complexes (SI-PPCs) present an attractive approach for medicinal inorganic chemistry through high-affinity non-covalent interactions with biomolecules, such as DNA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inorganic biochemistry 2022-07, Vol.232, p.111811-111811, Article 111811
Hauptverfasser: Rosa, Nathália Magalhães P., Ferreira, Frederico Henrique do C., Farrell, Nicholas P., Costa, Luiz Antônio S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111811
container_issue
container_start_page 111811
container_title Journal of inorganic biochemistry
container_volume 232
creator Rosa, Nathália Magalhães P.
Ferreira, Frederico Henrique do C.
Farrell, Nicholas P.
Costa, Luiz Antônio S.
description An impressive class of formally substitution-inert polynuclear platinum complexes known as Substitution-inert Polynuclear Platinum (II) Complexes (SI-PPCs) present an attractive approach for medicinal inorganic chemistry through high-affinity non-covalent interactions with biomolecules, such as DNA and Glycosaminoglycans (GAGs). This interaction occurs through the formation of non-covalent cyclic structures called clamps and forks with the phosphate and sulfate groups present in these biomolecules. This work shows several analyses of the non-covalent interactions formed between heparin (PDB code: 1HPN) and SI-PPCs obtained through molecular dynamics (MD) simulations. Root Mean Square Deviation (RMSD) results showed that the “non-covalent” di-nuclear platinum compound, DiplatinNC ([{trans-Pt(NH3)2(NH2(CH2)6NH3+)}2-μ-NH2(CH2)6NH2]6+) and AH44 ([{Pt(NH3)3}2{(μ-(H2N(CH2)6NH2)2-(trans-Pt(NH3)2}]6+, 0,0,0/t,t,t,) complexes, which are both 6+ charged complexes, were the most rigid. On the other hand, the Root Mean Square Fluctuation (RMSF) showed that there is a reduction in the atomic fluctuation of atoms in the central region of the heparin molecule; the solvent accessible surface area (SASA) analysis also indicates a reduction in the accessible area by the heparin when interacting with SI-PPCs. The evaluation of H-Bond data confirms the formation of the non-covalent interactions, which may suggest a decrease in the action of 1HPN by preventing the action of enzymes on this substrate. In addition, thermodynamic results indicate that this interaction is spontaneous, considering the negative variations in the Gibbs free energy presented by the studied systems. Substitution-inert Polynuclear Platinum (II) Complexes interact with the heparin model, 1HPN, resulting in metalloshield and modulation of biological function to inhibit the metastasis process. [Display omitted] •Platinum (II) centers preferentially bind to sulfate groups generating changes in heparin.•Molecular dynamics closely analyzes interactions for a full depict of ligand trajectories.•Analysis of H-bonds proof the formation of non-covalent structures.•Triplatin complexes exhibited the highest number of native contacts and H-Bonds.•Metalloshield and modulation of biological function inhibit the metastasis process.
doi_str_mv 10.1016/j.jinorgbio.2022.111811
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2646944184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0162013422001003</els_id><sourcerecordid>2646944184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-2d1fce94bce780e5d87aeb09e0ba9e2b6186f85a967732b3b6ee7e3df67587bd3</originalsourceid><addsrcrecordid>eNqFkc1u1TAQhS1ERS-FVwAv2eRix0mcsLuqaEGqxKKwtvwzqXzl2ME_FXkA3htf3bZbVh7J35kzMwehj5TsKaHD5-P-aH2ID8qGfUvadk8pHSl9hXZ05KxhrOteo10l24ZQ1l2itykdCSF93_E36JL1bOAjnXbo731RKdtcsg2-sR5ixmtwmy_agYx4dTJbXxasw7I6-AMJS2_wrdt0SHKpQzzUUvr0BR_wEhzo4qrMbL5-6oRTLmbDYcY2J-yrhQ6P0oHP2PoMUeqTb3qHLmbpErx_eq_Qr5uvP6-_NXc_br9fH-4azQjNTWvorGHqlAY-EujNyCUoMgFRcoJWDXQc5rGX08A5axVTAwAHZuaB9yNXhl2hT-e-awy_C6QsFps0OCc9hJJEO3TD1HV07CrKz6iOIaUIs1ijXWTcBCXilIE4ipcMxCkDcc6gKj88mRS1gHnRPR-9AoczAHXVRwtRJG3BazA2gs7CBPtfk38JGqFB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646944184</pqid></control><display><type>article</type><title>Substitution-inert polynuclear platinum complexes and Glycosaminoglycans: A molecular dynamics study of its non-covalent interactions</title><source>Elsevier ScienceDirect Journals</source><creator>Rosa, Nathália Magalhães P. ; Ferreira, Frederico Henrique do C. ; Farrell, Nicholas P. ; Costa, Luiz Antônio S.</creator><creatorcontrib>Rosa, Nathália Magalhães P. ; Ferreira, Frederico Henrique do C. ; Farrell, Nicholas P. ; Costa, Luiz Antônio S.</creatorcontrib><description>An impressive class of formally substitution-inert polynuclear platinum complexes known as Substitution-inert Polynuclear Platinum (II) Complexes (SI-PPCs) present an attractive approach for medicinal inorganic chemistry through high-affinity non-covalent interactions with biomolecules, such as DNA and Glycosaminoglycans (GAGs). This interaction occurs through the formation of non-covalent cyclic structures called clamps and forks with the phosphate and sulfate groups present in these biomolecules. This work shows several analyses of the non-covalent interactions formed between heparin (PDB code: 1HPN) and SI-PPCs obtained through molecular dynamics (MD) simulations. Root Mean Square Deviation (RMSD) results showed that the “non-covalent” di-nuclear platinum compound, DiplatinNC ([{trans-Pt(NH3)2(NH2(CH2)6NH3+)}2-μ-NH2(CH2)6NH2]6+) and AH44 ([{Pt(NH3)3}2{(μ-(H2N(CH2)6NH2)2-(trans-Pt(NH3)2}]6+, 0,0,0/t,t,t,) complexes, which are both 6+ charged complexes, were the most rigid. On the other hand, the Root Mean Square Fluctuation (RMSF) showed that there is a reduction in the atomic fluctuation of atoms in the central region of the heparin molecule; the solvent accessible surface area (SASA) analysis also indicates a reduction in the accessible area by the heparin when interacting with SI-PPCs. The evaluation of H-Bond data confirms the formation of the non-covalent interactions, which may suggest a decrease in the action of 1HPN by preventing the action of enzymes on this substrate. In addition, thermodynamic results indicate that this interaction is spontaneous, considering the negative variations in the Gibbs free energy presented by the studied systems. Substitution-inert Polynuclear Platinum (II) Complexes interact with the heparin model, 1HPN, resulting in metalloshield and modulation of biological function to inhibit the metastasis process. [Display omitted] •Platinum (II) centers preferentially bind to sulfate groups generating changes in heparin.•Molecular dynamics closely analyzes interactions for a full depict of ligand trajectories.•Analysis of H-bonds proof the formation of non-covalent structures.•Triplatin complexes exhibited the highest number of native contacts and H-Bonds.•Metalloshield and modulation of biological function inhibit the metastasis process.</description><identifier>ISSN: 0162-0134</identifier><identifier>EISSN: 1873-3344</identifier><identifier>DOI: 10.1016/j.jinorgbio.2022.111811</identifier><identifier>PMID: 35367819</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biomolecules ; Molecular dynamics: non-covalent interactions ; SI-PPCs ; Sulfate clamps ; TriplatinNC</subject><ispartof>Journal of inorganic biochemistry, 2022-07, Vol.232, p.111811-111811, Article 111811</ispartof><rights>2022 Elsevier Inc.</rights><rights>Copyright © 2022 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-2d1fce94bce780e5d87aeb09e0ba9e2b6186f85a967732b3b6ee7e3df67587bd3</citedby><cites>FETCH-LOGICAL-c301t-2d1fce94bce780e5d87aeb09e0ba9e2b6186f85a967732b3b6ee7e3df67587bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jinorgbio.2022.111811$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35367819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosa, Nathália Magalhães P.</creatorcontrib><creatorcontrib>Ferreira, Frederico Henrique do C.</creatorcontrib><creatorcontrib>Farrell, Nicholas P.</creatorcontrib><creatorcontrib>Costa, Luiz Antônio S.</creatorcontrib><title>Substitution-inert polynuclear platinum complexes and Glycosaminoglycans: A molecular dynamics study of its non-covalent interactions</title><title>Journal of inorganic biochemistry</title><addtitle>J Inorg Biochem</addtitle><description>An impressive class of formally substitution-inert polynuclear platinum complexes known as Substitution-inert Polynuclear Platinum (II) Complexes (SI-PPCs) present an attractive approach for medicinal inorganic chemistry through high-affinity non-covalent interactions with biomolecules, such as DNA and Glycosaminoglycans (GAGs). This interaction occurs through the formation of non-covalent cyclic structures called clamps and forks with the phosphate and sulfate groups present in these biomolecules. This work shows several analyses of the non-covalent interactions formed between heparin (PDB code: 1HPN) and SI-PPCs obtained through molecular dynamics (MD) simulations. Root Mean Square Deviation (RMSD) results showed that the “non-covalent” di-nuclear platinum compound, DiplatinNC ([{trans-Pt(NH3)2(NH2(CH2)6NH3+)}2-μ-NH2(CH2)6NH2]6+) and AH44 ([{Pt(NH3)3}2{(μ-(H2N(CH2)6NH2)2-(trans-Pt(NH3)2}]6+, 0,0,0/t,t,t,) complexes, which are both 6+ charged complexes, were the most rigid. On the other hand, the Root Mean Square Fluctuation (RMSF) showed that there is a reduction in the atomic fluctuation of atoms in the central region of the heparin molecule; the solvent accessible surface area (SASA) analysis also indicates a reduction in the accessible area by the heparin when interacting with SI-PPCs. The evaluation of H-Bond data confirms the formation of the non-covalent interactions, which may suggest a decrease in the action of 1HPN by preventing the action of enzymes on this substrate. In addition, thermodynamic results indicate that this interaction is spontaneous, considering the negative variations in the Gibbs free energy presented by the studied systems. Substitution-inert Polynuclear Platinum (II) Complexes interact with the heparin model, 1HPN, resulting in metalloshield and modulation of biological function to inhibit the metastasis process. [Display omitted] •Platinum (II) centers preferentially bind to sulfate groups generating changes in heparin.•Molecular dynamics closely analyzes interactions for a full depict of ligand trajectories.•Analysis of H-bonds proof the formation of non-covalent structures.•Triplatin complexes exhibited the highest number of native contacts and H-Bonds.•Metalloshield and modulation of biological function inhibit the metastasis process.</description><subject>Biomolecules</subject><subject>Molecular dynamics: non-covalent interactions</subject><subject>SI-PPCs</subject><subject>Sulfate clamps</subject><subject>TriplatinNC</subject><issn>0162-0134</issn><issn>1873-3344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1TAQhS1ERS-FVwAv2eRix0mcsLuqaEGqxKKwtvwzqXzl2ME_FXkA3htf3bZbVh7J35kzMwehj5TsKaHD5-P-aH2ID8qGfUvadk8pHSl9hXZ05KxhrOteo10l24ZQ1l2itykdCSF93_E36JL1bOAjnXbo731RKdtcsg2-sR5ixmtwmy_agYx4dTJbXxasw7I6-AMJS2_wrdt0SHKpQzzUUvr0BR_wEhzo4qrMbL5-6oRTLmbDYcY2J-yrhQ6P0oHP2PoMUeqTb3qHLmbpErx_eq_Qr5uvP6-_NXc_br9fH-4azQjNTWvorGHqlAY-EujNyCUoMgFRcoJWDXQc5rGX08A5axVTAwAHZuaB9yNXhl2hT-e-awy_C6QsFps0OCc9hJJEO3TD1HV07CrKz6iOIaUIs1ijXWTcBCXilIE4ipcMxCkDcc6gKj88mRS1gHnRPR-9AoczAHXVRwtRJG3BazA2gs7CBPtfk38JGqFB</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Rosa, Nathália Magalhães P.</creator><creator>Ferreira, Frederico Henrique do C.</creator><creator>Farrell, Nicholas P.</creator><creator>Costa, Luiz Antônio S.</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202207</creationdate><title>Substitution-inert polynuclear platinum complexes and Glycosaminoglycans: A molecular dynamics study of its non-covalent interactions</title><author>Rosa, Nathália Magalhães P. ; Ferreira, Frederico Henrique do C. ; Farrell, Nicholas P. ; Costa, Luiz Antônio S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-2d1fce94bce780e5d87aeb09e0ba9e2b6186f85a967732b3b6ee7e3df67587bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomolecules</topic><topic>Molecular dynamics: non-covalent interactions</topic><topic>SI-PPCs</topic><topic>Sulfate clamps</topic><topic>TriplatinNC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosa, Nathália Magalhães P.</creatorcontrib><creatorcontrib>Ferreira, Frederico Henrique do C.</creatorcontrib><creatorcontrib>Farrell, Nicholas P.</creatorcontrib><creatorcontrib>Costa, Luiz Antônio S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of inorganic biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosa, Nathália Magalhães P.</au><au>Ferreira, Frederico Henrique do C.</au><au>Farrell, Nicholas P.</au><au>Costa, Luiz Antônio S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substitution-inert polynuclear platinum complexes and Glycosaminoglycans: A molecular dynamics study of its non-covalent interactions</atitle><jtitle>Journal of inorganic biochemistry</jtitle><addtitle>J Inorg Biochem</addtitle><date>2022-07</date><risdate>2022</risdate><volume>232</volume><spage>111811</spage><epage>111811</epage><pages>111811-111811</pages><artnum>111811</artnum><issn>0162-0134</issn><eissn>1873-3344</eissn><abstract>An impressive class of formally substitution-inert polynuclear platinum complexes known as Substitution-inert Polynuclear Platinum (II) Complexes (SI-PPCs) present an attractive approach for medicinal inorganic chemistry through high-affinity non-covalent interactions with biomolecules, such as DNA and Glycosaminoglycans (GAGs). This interaction occurs through the formation of non-covalent cyclic structures called clamps and forks with the phosphate and sulfate groups present in these biomolecules. This work shows several analyses of the non-covalent interactions formed between heparin (PDB code: 1HPN) and SI-PPCs obtained through molecular dynamics (MD) simulations. Root Mean Square Deviation (RMSD) results showed that the “non-covalent” di-nuclear platinum compound, DiplatinNC ([{trans-Pt(NH3)2(NH2(CH2)6NH3+)}2-μ-NH2(CH2)6NH2]6+) and AH44 ([{Pt(NH3)3}2{(μ-(H2N(CH2)6NH2)2-(trans-Pt(NH3)2}]6+, 0,0,0/t,t,t,) complexes, which are both 6+ charged complexes, were the most rigid. On the other hand, the Root Mean Square Fluctuation (RMSF) showed that there is a reduction in the atomic fluctuation of atoms in the central region of the heparin molecule; the solvent accessible surface area (SASA) analysis also indicates a reduction in the accessible area by the heparin when interacting with SI-PPCs. The evaluation of H-Bond data confirms the formation of the non-covalent interactions, which may suggest a decrease in the action of 1HPN by preventing the action of enzymes on this substrate. In addition, thermodynamic results indicate that this interaction is spontaneous, considering the negative variations in the Gibbs free energy presented by the studied systems. Substitution-inert Polynuclear Platinum (II) Complexes interact with the heparin model, 1HPN, resulting in metalloshield and modulation of biological function to inhibit the metastasis process. [Display omitted] •Platinum (II) centers preferentially bind to sulfate groups generating changes in heparin.•Molecular dynamics closely analyzes interactions for a full depict of ligand trajectories.•Analysis of H-bonds proof the formation of non-covalent structures.•Triplatin complexes exhibited the highest number of native contacts and H-Bonds.•Metalloshield and modulation of biological function inhibit the metastasis process.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35367819</pmid><doi>10.1016/j.jinorgbio.2022.111811</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-0134
ispartof Journal of inorganic biochemistry, 2022-07, Vol.232, p.111811-111811, Article 111811
issn 0162-0134
1873-3344
language eng
recordid cdi_proquest_miscellaneous_2646944184
source Elsevier ScienceDirect Journals
subjects Biomolecules
Molecular dynamics: non-covalent interactions
SI-PPCs
Sulfate clamps
TriplatinNC
title Substitution-inert polynuclear platinum complexes and Glycosaminoglycans: A molecular dynamics study of its non-covalent interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substitution-inert%20polynuclear%20platinum%20complexes%20and%20Glycosaminoglycans:%20A%20molecular%20dynamics%20study%20of%20its%20non-covalent%20interactions&rft.jtitle=Journal%20of%20inorganic%20biochemistry&rft.au=Rosa,%20Nath%C3%A1lia%20Magalh%C3%A3es%20P.&rft.date=2022-07&rft.volume=232&rft.spage=111811&rft.epage=111811&rft.pages=111811-111811&rft.artnum=111811&rft.issn=0162-0134&rft.eissn=1873-3344&rft_id=info:doi/10.1016/j.jinorgbio.2022.111811&rft_dat=%3Cproquest_cross%3E2646944184%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646944184&rft_id=info:pmid/35367819&rft_els_id=S0162013422001003&rfr_iscdi=true