Extracellular vesicles derived from human Sertoli cells: characterizations, proteomic analysis, and miRNA profiling

Background Extracellular vesicles (EVs) contain thousands of proteins and nucleic acids, playing an important role in cell–cell communications. Sertoli cells have been essential in the testis as a “nurse cell”. However, EVs derived from human Sertoli cells (HSerCs) have not been well investigated. M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology reports 2022-06, Vol.49 (6), p.4673-4681
Hauptverfasser: Tan, Xiao-Hui, Gu, Sheng-Ji, Tian, Wen-Jie, Song, Wen-Peng, Gu, Yang-Yang, Yuan, Yi-Ming, Li, Xue-Song, Xin, Zhong-Cheng, Kim, Sae Woong, Guan, Rui-Li, Bae, Woong Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Extracellular vesicles (EVs) contain thousands of proteins and nucleic acids, playing an important role in cell–cell communications. Sertoli cells have been essential in the testis as a “nurse cell”. However, EVs derived from human Sertoli cells (HSerCs) have not been well investigated. Methods EVs were isolated from HSerCs via ultracentrifugation and characterized by transmission electron microscopy, tunable resistive pulse sensing, and Western blotting. The cargo carried by HSerCs-EVs was measured via liquid chromatography-mass spectrometry and GeneChip miRNA Arrays. Bioinformatic analysis was performed to reveal potential functions of HSerCs-EVs. Results A total of 860 proteins with no less than 2 unique peptides and 88 microRNAs with high signal values were identified in HSerCs-EVs. Biological processes related to molecular binding, enzyme activity, and regulation of cell cycle were significantly enriched. Specifically, many proteins in HSerCs-EVs were associated with spermatogenesis and regulation of immune system, including Septins, Large proline-rich protein BAG6, Clusterin, and Galectin-1. Moreover, abundant microRNAs within HSerCs-EVs (miR-638, miR-149-3p, miR-1246, etc.) had a possible impact on male reproductive disorders such as asthenozoospermia and oligozoospermia. Conclusions Our study has shown that HSerCs-EVs contain diverse components such as proteins and microRNAs. Further research is required to evaluate HSerCs-EVs in spermatogenesis, which are underutilized but highly potent resources with particular promise for male infertility.
ISSN:0301-4851
1573-4978
DOI:10.1007/s11033-022-07316-1