Ball-milling-induced crystallization and ball-milling effect on thermal crystallization kinetics in an amorphous FeMoSiB alloy

Microstructure evolution in a melt-spun amorphous Fe sub 77.2 Mo sub 0.8 Si sub 9 B sub 13 alloy subjected to high-energy ball milling was investigated by means of x-ray diffraction (XRD), a transmission electron microscope (TEM), and a differential scanning calorimeter (DSC). It was found that duri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science Physical Metallurgy and Materials Science, 1997-05, Vol.28 (5), p.1123-1131
Hauptverfasser: GUO, F. Q, LU, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1131
container_issue 5
container_start_page 1123
container_title Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science
container_volume 28
creator GUO, F. Q
LU, K
description Microstructure evolution in a melt-spun amorphous Fe sub 77.2 Mo sub 0.8 Si sub 9 B sub 13 alloy subjected to high-energy ball milling was investigated by means of x-ray diffraction (XRD), a transmission electron microscope (TEM), and a differential scanning calorimeter (DSC). It was found that during ball milling, crystallization occurs in the amorphous ribbon sample with precipitation of an alpha -Fe nanostructure (rather than alpha -Fe and borides as in the usual thermal crystallization products) when the milling time exceeds 135 h. The volume fraction of material crystallized was found to be approximately proportional to the milling time. The fully crystallized sample with a single alpha -Fe nanophase exhibits an intrinsic thermal stability against phase separation upon annealing at high temperatures. The ball-milling effect on the subsequent thermal crystallization of the amorphous phase in an as-milled sample was studied by comparison of the crystallization products and kinetic parameters between the as-quenched amorphous sample and the as-milled partially crystallized samples. The crystallization temperatures and activation energies for the crystallization processes of the residual amorphous phase were considerably decreased due to ball milling, indicating that ball milling has a significant effect on the depression of thermal stability of the residual amorphous phase.
doi_str_mv 10.1007/s11661-997-0278-0
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_26464895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26464895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-3c314ad2965d814348432e2128871d987b483996f299847e14bc7805e716a5583</originalsourceid><addsrcrecordid>eNplkU9rVDEUxR-iYK1-AHcRxF00N_-ztKVVoaWL1nXI5OU50bxkTDKLceFnN8MUEVzdC-d3Dvdypuk1kPdAiPrQAKQEbIzChCqNyZPpDARnGAwnT8dOFMNCUvZ8etHad0IIGCbPpt8XLiW8xpRi_oZjnvc-zMjXQ-tDiL9cjyUjl2e0-QdEYVmC72hIfRvq6tJ_lh8xhx59Q_FoR24tdbct-4auw225jxdosOXwcnq2uNTCq8d5Pn29vnq4_Ixv7j59ufx4gz2jpmPmGXA3UyPFrIEzrjmjgQLVWsFstNpwzYyRCzVGcxWAb7zSRAQF0gmh2fn05pRbWo-2-diD3_qS8_jCCmJA0cG8OzG7Wn7uQ-t2jc2HlFwO43BLJZdcGzFAOIG-ltZqWOyuxtXVgwVij23YUxt2tGGPbVgyPG8fw13zLi3VZR_bXyNVhEuh2B_Kv4pB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26464895</pqid></control><display><type>article</type><title>Ball-milling-induced crystallization and ball-milling effect on thermal crystallization kinetics in an amorphous FeMoSiB alloy</title><source>SpringerLink (Online service)</source><creator>GUO, F. Q ; LU, K</creator><creatorcontrib>GUO, F. Q ; LU, K</creatorcontrib><description>Microstructure evolution in a melt-spun amorphous Fe sub 77.2 Mo sub 0.8 Si sub 9 B sub 13 alloy subjected to high-energy ball milling was investigated by means of x-ray diffraction (XRD), a transmission electron microscope (TEM), and a differential scanning calorimeter (DSC). It was found that during ball milling, crystallization occurs in the amorphous ribbon sample with precipitation of an alpha -Fe nanostructure (rather than alpha -Fe and borides as in the usual thermal crystallization products) when the milling time exceeds 135 h. The volume fraction of material crystallized was found to be approximately proportional to the milling time. The fully crystallized sample with a single alpha -Fe nanophase exhibits an intrinsic thermal stability against phase separation upon annealing at high temperatures. The ball-milling effect on the subsequent thermal crystallization of the amorphous phase in an as-milled sample was studied by comparison of the crystallization products and kinetic parameters between the as-quenched amorphous sample and the as-milled partially crystallized samples. The crystallization temperatures and activation energies for the crystallization processes of the residual amorphous phase were considerably decreased due to ball milling, indicating that ball milling has a significant effect on the depression of thermal stability of the residual amorphous phase.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-997-0278-0</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>ACTIVATION ENERGY ; AMORPHOUS STATE ; Applied sciences ; BORON ALLOYS ; Condensed matter: structure, mechanical and thermal properties ; CRYSTALLIZATION ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; EXPERIMENTAL DATA ; IRON ALLOYS ; KINETICS ; MATERIALS SCIENCE ; Metals. Metallurgy ; MILLING ; MOLYBDENUM ALLOYS ; Physics ; PRECIPITATION ; SILICON ALLOYS ; SOLID SOLUTIONS ; Solid-solid transitions ; Specific phase transitions</subject><ispartof>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 1997-05, Vol.28 (5), p.1123-1131</ispartof><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-3c314ad2965d814348432e2128871d987b483996f299847e14bc7805e716a5583</citedby><cites>FETCH-LOGICAL-c329t-3c314ad2965d814348432e2128871d987b483996f299847e14bc7805e716a5583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2704657$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/509172$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>GUO, F. Q</creatorcontrib><creatorcontrib>LU, K</creatorcontrib><title>Ball-milling-induced crystallization and ball-milling effect on thermal crystallization kinetics in an amorphous FeMoSiB alloy</title><title>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science</title><description>Microstructure evolution in a melt-spun amorphous Fe sub 77.2 Mo sub 0.8 Si sub 9 B sub 13 alloy subjected to high-energy ball milling was investigated by means of x-ray diffraction (XRD), a transmission electron microscope (TEM), and a differential scanning calorimeter (DSC). It was found that during ball milling, crystallization occurs in the amorphous ribbon sample with precipitation of an alpha -Fe nanostructure (rather than alpha -Fe and borides as in the usual thermal crystallization products) when the milling time exceeds 135 h. The volume fraction of material crystallized was found to be approximately proportional to the milling time. The fully crystallized sample with a single alpha -Fe nanophase exhibits an intrinsic thermal stability against phase separation upon annealing at high temperatures. The ball-milling effect on the subsequent thermal crystallization of the amorphous phase in an as-milled sample was studied by comparison of the crystallization products and kinetic parameters between the as-quenched amorphous sample and the as-milled partially crystallized samples. The crystallization temperatures and activation energies for the crystallization processes of the residual amorphous phase were considerably decreased due to ball milling, indicating that ball milling has a significant effect on the depression of thermal stability of the residual amorphous phase.</description><subject>ACTIVATION ENERGY</subject><subject>AMORPHOUS STATE</subject><subject>Applied sciences</subject><subject>BORON ALLOYS</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>CRYSTALLIZATION</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>EXPERIMENTAL DATA</subject><subject>IRON ALLOYS</subject><subject>KINETICS</subject><subject>MATERIALS SCIENCE</subject><subject>Metals. Metallurgy</subject><subject>MILLING</subject><subject>MOLYBDENUM ALLOYS</subject><subject>Physics</subject><subject>PRECIPITATION</subject><subject>SILICON ALLOYS</subject><subject>SOLID SOLUTIONS</subject><subject>Solid-solid transitions</subject><subject>Specific phase transitions</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNplkU9rVDEUxR-iYK1-AHcRxF00N_-ztKVVoaWL1nXI5OU50bxkTDKLceFnN8MUEVzdC-d3Dvdypuk1kPdAiPrQAKQEbIzChCqNyZPpDARnGAwnT8dOFMNCUvZ8etHad0IIGCbPpt8XLiW8xpRi_oZjnvc-zMjXQ-tDiL9cjyUjl2e0-QdEYVmC72hIfRvq6tJ_lh8xhx59Q_FoR24tdbct-4auw225jxdosOXwcnq2uNTCq8d5Pn29vnq4_Ixv7j59ufx4gz2jpmPmGXA3UyPFrIEzrjmjgQLVWsFstNpwzYyRCzVGcxWAb7zSRAQF0gmh2fn05pRbWo-2-diD3_qS8_jCCmJA0cG8OzG7Wn7uQ-t2jc2HlFwO43BLJZdcGzFAOIG-ltZqWOyuxtXVgwVij23YUxt2tGGPbVgyPG8fw13zLi3VZR_bXyNVhEuh2B_Kv4pB</recordid><startdate>19970501</startdate><enddate>19970501</enddate><creator>GUO, F. Q</creator><creator>LU, K</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19970501</creationdate><title>Ball-milling-induced crystallization and ball-milling effect on thermal crystallization kinetics in an amorphous FeMoSiB alloy</title><author>GUO, F. Q ; LU, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-3c314ad2965d814348432e2128871d987b483996f299847e14bc7805e716a5583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>ACTIVATION ENERGY</topic><topic>AMORPHOUS STATE</topic><topic>Applied sciences</topic><topic>BORON ALLOYS</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>CRYSTALLIZATION</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>EXPERIMENTAL DATA</topic><topic>IRON ALLOYS</topic><topic>KINETICS</topic><topic>MATERIALS SCIENCE</topic><topic>Metals. Metallurgy</topic><topic>MILLING</topic><topic>MOLYBDENUM ALLOYS</topic><topic>Physics</topic><topic>PRECIPITATION</topic><topic>SILICON ALLOYS</topic><topic>SOLID SOLUTIONS</topic><topic>Solid-solid transitions</topic><topic>Specific phase transitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GUO, F. Q</creatorcontrib><creatorcontrib>LU, K</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GUO, F. Q</au><au>LU, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ball-milling-induced crystallization and ball-milling effect on thermal crystallization kinetics in an amorphous FeMoSiB alloy</atitle><jtitle>Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science</jtitle><date>1997-05-01</date><risdate>1997</risdate><volume>28</volume><issue>5</issue><spage>1123</spage><epage>1131</epage><pages>1123-1131</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>Microstructure evolution in a melt-spun amorphous Fe sub 77.2 Mo sub 0.8 Si sub 9 B sub 13 alloy subjected to high-energy ball milling was investigated by means of x-ray diffraction (XRD), a transmission electron microscope (TEM), and a differential scanning calorimeter (DSC). It was found that during ball milling, crystallization occurs in the amorphous ribbon sample with precipitation of an alpha -Fe nanostructure (rather than alpha -Fe and borides as in the usual thermal crystallization products) when the milling time exceeds 135 h. The volume fraction of material crystallized was found to be approximately proportional to the milling time. The fully crystallized sample with a single alpha -Fe nanophase exhibits an intrinsic thermal stability against phase separation upon annealing at high temperatures. The ball-milling effect on the subsequent thermal crystallization of the amorphous phase in an as-milled sample was studied by comparison of the crystallization products and kinetic parameters between the as-quenched amorphous sample and the as-milled partially crystallized samples. The crystallization temperatures and activation energies for the crystallization processes of the residual amorphous phase were considerably decreased due to ball milling, indicating that ball milling has a significant effect on the depression of thermal stability of the residual amorphous phase.</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s11661-997-0278-0</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 1997-05, Vol.28 (5), p.1123-1131
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_miscellaneous_26464895
source SpringerLink (Online service)
subjects ACTIVATION ENERGY
AMORPHOUS STATE
Applied sciences
BORON ALLOYS
Condensed matter: structure, mechanical and thermal properties
CRYSTALLIZATION
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
EXPERIMENTAL DATA
IRON ALLOYS
KINETICS
MATERIALS SCIENCE
Metals. Metallurgy
MILLING
MOLYBDENUM ALLOYS
Physics
PRECIPITATION
SILICON ALLOYS
SOLID SOLUTIONS
Solid-solid transitions
Specific phase transitions
title Ball-milling-induced crystallization and ball-milling effect on thermal crystallization kinetics in an amorphous FeMoSiB alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ball-milling-induced%20crystallization%20and%20ball-milling%20effect%20on%20thermal%20crystallization%20kinetics%20in%20an%20amorphous%20FeMoSiB%20alloy&rft.jtitle=Metallurgical%20and%20Materials%20Transactions.%20A,%20Physical%20Metallurgy%20and%20Materials%20Science&rft.au=GUO,%20F.%20Q&rft.date=1997-05-01&rft.volume=28&rft.issue=5&rft.spage=1123&rft.epage=1131&rft.pages=1123-1131&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-997-0278-0&rft_dat=%3Cproquest_osti_%3E26464895%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26464895&rft_id=info:pmid/&rfr_iscdi=true