Bounded, High-Resolution Differencing Schemes Applied to the Discrete Ordinates Method

This paper presents an improved spatial differencing practice for the discrete ordinates form of the radiative transport equation (RTE). Several bounded, high-resolution (HR) schemes are applied to the primitive variable form of the RTE in a finite volume context. These schemes provide high accuracy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermophysics and heat transfer 1997-10, Vol.11 (4), p.540-548
Hauptverfasser: Jessee, J. Patrick, Fiveland, Woodrow A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 548
container_issue 4
container_start_page 540
container_title Journal of thermophysics and heat transfer
container_volume 11
creator Jessee, J. Patrick
Fiveland, Woodrow A
description This paper presents an improved spatial differencing practice for the discrete ordinates form of the radiative transport equation (RTE). Several bounded, high-resolution (HR) schemes are applied to the primitive variable form of the RTE in a finite volume context. These schemes provide high accuracy while removing nonphysical oscillations that are characteristic of the diamond difference scheme. A defect correction technique is applied to solve the equations that result from the high-order operators. Predictions from the HR schemes are compared to those of the conventional step and diamond difference schemes for a number of two-dimensional enclosures with gray walls and either absorbing or isotropically scattering media. Accuracy, stability, and effects on convergence are addressed for the different schemes. The HR schemes were found to provide both accuracy and boundedness at modest computational costs. (Author)
doi_str_mv 10.2514/2.6296
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_miscellaneous_26459191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>746087601</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-a88cc6ee5ecb8fd4363fa3375af6619317cb153a1e2b4fbe1fcaf2ea13cf10323</originalsourceid><addsrcrecordid>eNp90UtLxDAQB_AgCq6vz1BQ1IPVPNo0Pa5vQRF8XcNsOnEr3aYmKei3t4vigoqnOeTHf2YyhGwxeshzlh3xQ8lLuURGLBcilYqqZTKiShWpKjhfJWshvFDKpCrYiDwdu76tsDpILuvnaXqHwTV9rF2bnNbWosfW1O1zcm-mOMOQjLuuqbFKokviFAcTjMeIya2v6hbiIG4wTl21QVYsNAE3v-o6eTw_ezi5TK9vL65OxtcpZJTHFJQyRiLmaCbKVpmQwoIQRQ5WSlYKVpjJsAUw5JPMTpBZA5YjMGEso4KLdbL3mdt599pjiHo2jIRNAy26Pugik1QVkrJB7v4ruczykpVzuP0Dvrjet8MWmgvGypJmZb6IM96F4NHqztcz8O-aUT0_g-Z6foYB7nzFQTDQWA_Dj4ZvzZVQIqeLrlADLDr-Ctv_S32-6q6y2vZNE_Etig9yZ58a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311990495</pqid></control><display><type>article</type><title>Bounded, High-Resolution Differencing Schemes Applied to the Discrete Ordinates Method</title><source>Alma/SFX Local Collection</source><creator>Jessee, J. Patrick ; Fiveland, Woodrow A</creator><creatorcontrib>Jessee, J. Patrick ; Fiveland, Woodrow A</creatorcontrib><description>This paper presents an improved spatial differencing practice for the discrete ordinates form of the radiative transport equation (RTE). Several bounded, high-resolution (HR) schemes are applied to the primitive variable form of the RTE in a finite volume context. These schemes provide high accuracy while removing nonphysical oscillations that are characteristic of the diamond difference scheme. A defect correction technique is applied to solve the equations that result from the high-order operators. Predictions from the HR schemes are compared to those of the conventional step and diamond difference schemes for a number of two-dimensional enclosures with gray walls and either absorbing or isotropically scattering media. Accuracy, stability, and effects on convergence are addressed for the different schemes. The HR schemes were found to provide both accuracy and boundedness at modest computational costs. (Author)</description><identifier>ISSN: 0887-8722</identifier><identifier>EISSN: 1533-6808</identifier><identifier>DOI: 10.2514/2.6296</identifier><identifier>CODEN: JTHTEO</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Computational methods ; Convergence of numerical methods ; Difference equations ; Exact sciences and technology ; Finite volume method ; Fundamental areas of phenomenology (including applications) ; Heat transfer ; Mathematical operators ; Physics ; Thermal radiation</subject><ispartof>Journal of thermophysics and heat transfer, 1997-10, Vol.11 (4), p.540-548</ispartof><rights>1997 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Oct 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-a88cc6ee5ecb8fd4363fa3375af6619317cb153a1e2b4fbe1fcaf2ea13cf10323</citedby><cites>FETCH-LOGICAL-a402t-a88cc6ee5ecb8fd4363fa3375af6619317cb153a1e2b4fbe1fcaf2ea13cf10323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2838350$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jessee, J. Patrick</creatorcontrib><creatorcontrib>Fiveland, Woodrow A</creatorcontrib><title>Bounded, High-Resolution Differencing Schemes Applied to the Discrete Ordinates Method</title><title>Journal of thermophysics and heat transfer</title><description>This paper presents an improved spatial differencing practice for the discrete ordinates form of the radiative transport equation (RTE). Several bounded, high-resolution (HR) schemes are applied to the primitive variable form of the RTE in a finite volume context. These schemes provide high accuracy while removing nonphysical oscillations that are characteristic of the diamond difference scheme. A defect correction technique is applied to solve the equations that result from the high-order operators. Predictions from the HR schemes are compared to those of the conventional step and diamond difference schemes for a number of two-dimensional enclosures with gray walls and either absorbing or isotropically scattering media. Accuracy, stability, and effects on convergence are addressed for the different schemes. The HR schemes were found to provide both accuracy and boundedness at modest computational costs. (Author)</description><subject>Computational methods</subject><subject>Convergence of numerical methods</subject><subject>Difference equations</subject><subject>Exact sciences and technology</subject><subject>Finite volume method</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat transfer</subject><subject>Mathematical operators</subject><subject>Physics</subject><subject>Thermal radiation</subject><issn>0887-8722</issn><issn>1533-6808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp90UtLxDAQB_AgCq6vz1BQ1IPVPNo0Pa5vQRF8XcNsOnEr3aYmKei3t4vigoqnOeTHf2YyhGwxeshzlh3xQ8lLuURGLBcilYqqZTKiShWpKjhfJWshvFDKpCrYiDwdu76tsDpILuvnaXqHwTV9rF2bnNbWosfW1O1zcm-mOMOQjLuuqbFKokviFAcTjMeIya2v6hbiIG4wTl21QVYsNAE3v-o6eTw_ezi5TK9vL65OxtcpZJTHFJQyRiLmaCbKVpmQwoIQRQ5WSlYKVpjJsAUw5JPMTpBZA5YjMGEso4KLdbL3mdt599pjiHo2jIRNAy26Pugik1QVkrJB7v4ruczykpVzuP0Dvrjet8MWmgvGypJmZb6IM96F4NHqztcz8O-aUT0_g-Z6foYB7nzFQTDQWA_Dj4ZvzZVQIqeLrlADLDr-Ctv_S32-6q6y2vZNE_Etig9yZ58a</recordid><startdate>19971001</startdate><enddate>19971001</enddate><creator>Jessee, J. Patrick</creator><creator>Fiveland, Woodrow A</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7TC</scope></search><sort><creationdate>19971001</creationdate><title>Bounded, High-Resolution Differencing Schemes Applied to the Discrete Ordinates Method</title><author>Jessee, J. Patrick ; Fiveland, Woodrow A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-a88cc6ee5ecb8fd4363fa3375af6619317cb153a1e2b4fbe1fcaf2ea13cf10323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Computational methods</topic><topic>Convergence of numerical methods</topic><topic>Difference equations</topic><topic>Exact sciences and technology</topic><topic>Finite volume method</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat transfer</topic><topic>Mathematical operators</topic><topic>Physics</topic><topic>Thermal radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jessee, J. Patrick</creatorcontrib><creatorcontrib>Fiveland, Woodrow A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of thermophysics and heat transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jessee, J. Patrick</au><au>Fiveland, Woodrow A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounded, High-Resolution Differencing Schemes Applied to the Discrete Ordinates Method</atitle><jtitle>Journal of thermophysics and heat transfer</jtitle><date>1997-10-01</date><risdate>1997</risdate><volume>11</volume><issue>4</issue><spage>540</spage><epage>548</epage><pages>540-548</pages><issn>0887-8722</issn><eissn>1533-6808</eissn><coden>JTHTEO</coden><abstract>This paper presents an improved spatial differencing practice for the discrete ordinates form of the radiative transport equation (RTE). Several bounded, high-resolution (HR) schemes are applied to the primitive variable form of the RTE in a finite volume context. These schemes provide high accuracy while removing nonphysical oscillations that are characteristic of the diamond difference scheme. A defect correction technique is applied to solve the equations that result from the high-order operators. Predictions from the HR schemes are compared to those of the conventional step and diamond difference schemes for a number of two-dimensional enclosures with gray walls and either absorbing or isotropically scattering media. Accuracy, stability, and effects on convergence are addressed for the different schemes. The HR schemes were found to provide both accuracy and boundedness at modest computational costs. (Author)</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/2.6296</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-8722
ispartof Journal of thermophysics and heat transfer, 1997-10, Vol.11 (4), p.540-548
issn 0887-8722
1533-6808
language eng
recordid cdi_proquest_miscellaneous_26459191
source Alma/SFX Local Collection
subjects Computational methods
Convergence of numerical methods
Difference equations
Exact sciences and technology
Finite volume method
Fundamental areas of phenomenology (including applications)
Heat transfer
Mathematical operators
Physics
Thermal radiation
title Bounded, High-Resolution Differencing Schemes Applied to the Discrete Ordinates Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounded,%20High-Resolution%20Differencing%20Schemes%20Applied%20to%20the%20Discrete%20Ordinates%20Method&rft.jtitle=Journal%20of%20thermophysics%20and%20heat%20transfer&rft.au=Jessee,%20J.%20Patrick&rft.date=1997-10-01&rft.volume=11&rft.issue=4&rft.spage=540&rft.epage=548&rft.pages=540-548&rft.issn=0887-8722&rft.eissn=1533-6808&rft.coden=JTHTEO&rft_id=info:doi/10.2514/2.6296&rft_dat=%3Cproquest_aiaa_%3E746087601%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311990495&rft_id=info:pmid/&rfr_iscdi=true