Rapidly and Repeatedly Reprogrammable Liquid Crystalline Elastomer via a Shape Memory Mechanism
Realization of muscle‐like actuation for a liquid crystal elastomer (LCE) requires mesogen alignment, which is typically achieved/fixed chemically during the synthesis. Post‐synthesis regulation of the alignment in a convenient and repeatable manner is highly desirable yet challenging. Here, a dual‐...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2022-05, Vol.34 (21), p.e2201679-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 21 |
container_start_page | e2201679 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Chen, Guancong Jin, Binjie Shi, Yunpeng Zhao, Qian Shen, Youqing Xie, Tao |
description | Realization of muscle‐like actuation for a liquid crystal elastomer (LCE) requires mesogen alignment, which is typically achieved/fixed chemically during the synthesis. Post‐synthesis regulation of the alignment in a convenient and repeatable manner is highly desirable yet challenging. Here, a dual‐phase LCE network is designed and synthesized with a crystalline melting transition above a liquid crystalline transition. The crystalline phase can serve as an “alignment frame” to fix any mechanical deformation via a shape memory mechanism, leading to corresponding mesogen alignment in the liquid crystalline phase. The alignment can be erased by melting, which can be the starting point for reprogramming. This strategy that relies on a physical shape memory transition for mesogen alignment permits repeated reprogramming in a timescale of seconds, in stark contrast to typical methods. It further leads to unusual versatility in designing 3D printed LCE with unlimited programmable actuation modes.
A dual‐phase LCE network with a crystalline transition temperature above the liquid crystalline transition temperature is designed. The crystalline phase serves as a built‐in physical “alignment frame” via its shape memory function. Consequently, the actuation behaviors of the liquid crystal network can be conveniently and repeatedly programmed/reprogrammed within 10 s. |
doi_str_mv | 10.1002/adma.202201679 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2645858976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2669316451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2889-1317abaa644943afb3e4de48bf6156596bce40d111d7a87a5b8d2249e8e896653</originalsourceid><addsrcrecordid>eNqF0MFrFDEUBvAgit1Wrx4l4MXLrEkmySTHZVursKXQ6jm8mby1KZmZbbKjzH9vlq0VeunpJfB7H4-PkA-cLTlj4gv4HpaCCcG4buwrsuBK8Eoyq16TBbO1qqyW5oSc5nzPGLOa6bfkpFa1apjUC-JuYBd8nCkMnt7gDmGPh295pvFXgr6HNiLdhIcpeLpOc95DjGFAehEh78ceE_0dgAK9vYMd0ivsxzSX0d3BEHL_jrzZQsz4_nGekZ9fL36sv1Wb68vv69Wm6oQxtuI1b6AF0FJaWcO2rVF6lKbdaq60srrtUDLPOfcNmAZUa7wQ0qJBY7VW9Rn5fMwtZz9MmPeuD7nDGGHAccpOaKmMMrbRhX56Ru_HKQ3luqK0rXmhvKjlUXVpzDnh1u1S6CHNjjN3qN4dqndP1ZeFj4-xU9ujf-L_ui7AHsGfEHF-Ic6tzq9W_8P_Ajwkj3M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2669316451</pqid></control><display><type>article</type><title>Rapidly and Repeatedly Reprogrammable Liquid Crystalline Elastomer via a Shape Memory Mechanism</title><source>Access via Wiley Online Library</source><creator>Chen, Guancong ; Jin, Binjie ; Shi, Yunpeng ; Zhao, Qian ; Shen, Youqing ; Xie, Tao</creator><creatorcontrib>Chen, Guancong ; Jin, Binjie ; Shi, Yunpeng ; Zhao, Qian ; Shen, Youqing ; Xie, Tao</creatorcontrib><description>Realization of muscle‐like actuation for a liquid crystal elastomer (LCE) requires mesogen alignment, which is typically achieved/fixed chemically during the synthesis. Post‐synthesis regulation of the alignment in a convenient and repeatable manner is highly desirable yet challenging. Here, a dual‐phase LCE network is designed and synthesized with a crystalline melting transition above a liquid crystalline transition. The crystalline phase can serve as an “alignment frame” to fix any mechanical deformation via a shape memory mechanism, leading to corresponding mesogen alignment in the liquid crystalline phase. The alignment can be erased by melting, which can be the starting point for reprogramming. This strategy that relies on a physical shape memory transition for mesogen alignment permits repeated reprogramming in a timescale of seconds, in stark contrast to typical methods. It further leads to unusual versatility in designing 3D printed LCE with unlimited programmable actuation modes.
A dual‐phase LCE network with a crystalline transition temperature above the liquid crystalline transition temperature is designed. The crystalline phase serves as a built‐in physical “alignment frame” via its shape memory function. Consequently, the actuation behaviors of the liquid crystal network can be conveniently and repeatedly programmed/reprogrammed within 10 s.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202201679</identifier><identifier>PMID: 35357046</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Actuation ; Alignment ; Crystal structure ; Crystallinity ; Elastomers ; liquid crystalline elastomers ; Liquid crystals ; Materials science ; mesogen alignment ; Muscles ; reversible actuators ; Shape memory ; shape memory polymers ; Synthesis ; Three dimensional printing</subject><ispartof>Advanced materials (Weinheim), 2022-05, Vol.34 (21), p.e2201679-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2889-1317abaa644943afb3e4de48bf6156596bce40d111d7a87a5b8d2249e8e896653</citedby><cites>FETCH-LOGICAL-c2889-1317abaa644943afb3e4de48bf6156596bce40d111d7a87a5b8d2249e8e896653</cites><orcidid>0000-0003-0222-9717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202201679$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202201679$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35357046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Guancong</creatorcontrib><creatorcontrib>Jin, Binjie</creatorcontrib><creatorcontrib>Shi, Yunpeng</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>Shen, Youqing</creatorcontrib><creatorcontrib>Xie, Tao</creatorcontrib><title>Rapidly and Repeatedly Reprogrammable Liquid Crystalline Elastomer via a Shape Memory Mechanism</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Realization of muscle‐like actuation for a liquid crystal elastomer (LCE) requires mesogen alignment, which is typically achieved/fixed chemically during the synthesis. Post‐synthesis regulation of the alignment in a convenient and repeatable manner is highly desirable yet challenging. Here, a dual‐phase LCE network is designed and synthesized with a crystalline melting transition above a liquid crystalline transition. The crystalline phase can serve as an “alignment frame” to fix any mechanical deformation via a shape memory mechanism, leading to corresponding mesogen alignment in the liquid crystalline phase. The alignment can be erased by melting, which can be the starting point for reprogramming. This strategy that relies on a physical shape memory transition for mesogen alignment permits repeated reprogramming in a timescale of seconds, in stark contrast to typical methods. It further leads to unusual versatility in designing 3D printed LCE with unlimited programmable actuation modes.
A dual‐phase LCE network with a crystalline transition temperature above the liquid crystalline transition temperature is designed. The crystalline phase serves as a built‐in physical “alignment frame” via its shape memory function. Consequently, the actuation behaviors of the liquid crystal network can be conveniently and repeatedly programmed/reprogrammed within 10 s.</description><subject>Actuation</subject><subject>Alignment</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Elastomers</subject><subject>liquid crystalline elastomers</subject><subject>Liquid crystals</subject><subject>Materials science</subject><subject>mesogen alignment</subject><subject>Muscles</subject><subject>reversible actuators</subject><subject>Shape memory</subject><subject>shape memory polymers</subject><subject>Synthesis</subject><subject>Three dimensional printing</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqF0MFrFDEUBvAgit1Wrx4l4MXLrEkmySTHZVursKXQ6jm8mby1KZmZbbKjzH9vlq0VeunpJfB7H4-PkA-cLTlj4gv4HpaCCcG4buwrsuBK8Eoyq16TBbO1qqyW5oSc5nzPGLOa6bfkpFa1apjUC-JuYBd8nCkMnt7gDmGPh295pvFXgr6HNiLdhIcpeLpOc95DjGFAehEh78ceE_0dgAK9vYMd0ivsxzSX0d3BEHL_jrzZQsz4_nGekZ9fL36sv1Wb68vv69Wm6oQxtuI1b6AF0FJaWcO2rVF6lKbdaq60srrtUDLPOfcNmAZUa7wQ0qJBY7VW9Rn5fMwtZz9MmPeuD7nDGGHAccpOaKmMMrbRhX56Ru_HKQ3luqK0rXmhvKjlUXVpzDnh1u1S6CHNjjN3qN4dqndP1ZeFj4-xU9ujf-L_ui7AHsGfEHF-Ic6tzq9W_8P_Ajwkj3M</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Chen, Guancong</creator><creator>Jin, Binjie</creator><creator>Shi, Yunpeng</creator><creator>Zhao, Qian</creator><creator>Shen, Youqing</creator><creator>Xie, Tao</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0222-9717</orcidid></search><sort><creationdate>20220501</creationdate><title>Rapidly and Repeatedly Reprogrammable Liquid Crystalline Elastomer via a Shape Memory Mechanism</title><author>Chen, Guancong ; Jin, Binjie ; Shi, Yunpeng ; Zhao, Qian ; Shen, Youqing ; Xie, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2889-1317abaa644943afb3e4de48bf6156596bce40d111d7a87a5b8d2249e8e896653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actuation</topic><topic>Alignment</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Elastomers</topic><topic>liquid crystalline elastomers</topic><topic>Liquid crystals</topic><topic>Materials science</topic><topic>mesogen alignment</topic><topic>Muscles</topic><topic>reversible actuators</topic><topic>Shape memory</topic><topic>shape memory polymers</topic><topic>Synthesis</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Guancong</creatorcontrib><creatorcontrib>Jin, Binjie</creatorcontrib><creatorcontrib>Shi, Yunpeng</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>Shen, Youqing</creatorcontrib><creatorcontrib>Xie, Tao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Guancong</au><au>Jin, Binjie</au><au>Shi, Yunpeng</au><au>Zhao, Qian</au><au>Shen, Youqing</au><au>Xie, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapidly and Repeatedly Reprogrammable Liquid Crystalline Elastomer via a Shape Memory Mechanism</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>34</volume><issue>21</issue><spage>e2201679</spage><epage>n/a</epage><pages>e2201679-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Realization of muscle‐like actuation for a liquid crystal elastomer (LCE) requires mesogen alignment, which is typically achieved/fixed chemically during the synthesis. Post‐synthesis regulation of the alignment in a convenient and repeatable manner is highly desirable yet challenging. Here, a dual‐phase LCE network is designed and synthesized with a crystalline melting transition above a liquid crystalline transition. The crystalline phase can serve as an “alignment frame” to fix any mechanical deformation via a shape memory mechanism, leading to corresponding mesogen alignment in the liquid crystalline phase. The alignment can be erased by melting, which can be the starting point for reprogramming. This strategy that relies on a physical shape memory transition for mesogen alignment permits repeated reprogramming in a timescale of seconds, in stark contrast to typical methods. It further leads to unusual versatility in designing 3D printed LCE with unlimited programmable actuation modes.
A dual‐phase LCE network with a crystalline transition temperature above the liquid crystalline transition temperature is designed. The crystalline phase serves as a built‐in physical “alignment frame” via its shape memory function. Consequently, the actuation behaviors of the liquid crystal network can be conveniently and repeatedly programmed/reprogrammed within 10 s.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35357046</pmid><doi>10.1002/adma.202201679</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0222-9717</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-05, Vol.34 (21), p.e2201679-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2645858976 |
source | Access via Wiley Online Library |
subjects | Actuation Alignment Crystal structure Crystallinity Elastomers liquid crystalline elastomers Liquid crystals Materials science mesogen alignment Muscles reversible actuators Shape memory shape memory polymers Synthesis Three dimensional printing |
title | Rapidly and Repeatedly Reprogrammable Liquid Crystalline Elastomer via a Shape Memory Mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapidly%20and%20Repeatedly%20Reprogrammable%20Liquid%20Crystalline%20Elastomer%20via%20a%20Shape%20Memory%20Mechanism&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Chen,%20Guancong&rft.date=2022-05-01&rft.volume=34&rft.issue=21&rft.spage=e2201679&rft.epage=n/a&rft.pages=e2201679-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202201679&rft_dat=%3Cproquest_cross%3E2669316451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2669316451&rft_id=info:pmid/35357046&rfr_iscdi=true |