Deciphering impedance cytometry signals with neural networks
Microfluidic impedance cytometry is a label-free technique for high-throughput single-cell analysis. Multi-frequency impedance measurements provide data that allows full characterisation of cells, linking electrical phenotype to individual biophysical properties. To efficiently extract the informati...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2022-05, Vol.22 (9), p.1714-1722 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1722 |
---|---|
container_issue | 9 |
container_start_page | 1714 |
container_title | Lab on a chip |
container_volume | 22 |
creator | Caselli, Federica Reale, Riccardo De Ninno, Adele Spencer, Daniel Morgan, Hywel Bisegna, Paolo |
description | Microfluidic impedance cytometry is a label-free technique for high-throughput single-cell analysis. Multi-frequency impedance measurements provide data that allows full characterisation of cells, linking electrical phenotype to individual biophysical properties. To efficiently extract the information embedded in the electrical signals, potentially in real-time, tailored signal processing is needed. Artificial intelligence approaches provide a promising new direction. Here we demonstrate the ability of neural networks to decipher impedance cytometry signals in two challenging scenarios: (i) to determine the intrinsic dielectric properties of single cells directly from raw impedance data streams, (ii) to capture single-cell signals that are hidden in the measured signals of coincident cells. The accuracy of the results and the high processing speed (fractions of ms per cell) demonstrate that neural networks can have an important role in impedance-based single-cell analysis. |
doi_str_mv | 10.1039/d2lc00028h |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2645469599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645469599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-550d4998c18fd7c019722e64030629e35705ae010bb27b5db14de3b7700b658b3</originalsourceid><addsrcrecordid>eNpdkM1LAzEQxYMotlYv_gGy4EWE1Umy2STgRVq_oOBFz8smO2237kdNdin9701t7UHm8Abmx2PeI-SSwh0Fru8LVlkAYGpxRIY0kTwGqvTxYddyQM68XwJQkaTqlAy4CENBDcnDBG25WqArm3lU1iss8sZiZDddW2PnNpEv501e-Whddouowd7lVZBu3bovf05OZuGGF3sdkc_np4_xazx9f3kbP05jywXtYiGgSLRWlqpZIe32IcYwTYBDyjRyIUHkCBSMYdKIwtCkQG6kBDCpUIaPyM3Od-Xa7x59l9Wlt1hVeYNt7zOWJiGYFloH9Pofumx7t00QKKEkBVA8ULc7yrrWe4ezbOXKOnebjEK27TSbsOn4t9PXAF_tLXtTY3FA_0rkP1fWb44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658710083</pqid></control><display><type>article</type><title>Deciphering impedance cytometry signals with neural networks</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Caselli, Federica ; Reale, Riccardo ; De Ninno, Adele ; Spencer, Daniel ; Morgan, Hywel ; Bisegna, Paolo</creator><creatorcontrib>Caselli, Federica ; Reale, Riccardo ; De Ninno, Adele ; Spencer, Daniel ; Morgan, Hywel ; Bisegna, Paolo</creatorcontrib><description>Microfluidic impedance cytometry is a label-free technique for high-throughput single-cell analysis. Multi-frequency impedance measurements provide data that allows full characterisation of cells, linking electrical phenotype to individual biophysical properties. To efficiently extract the information embedded in the electrical signals, potentially in real-time, tailored signal processing is needed. Artificial intelligence approaches provide a promising new direction. Here we demonstrate the ability of neural networks to decipher impedance cytometry signals in two challenging scenarios: (i) to determine the intrinsic dielectric properties of single cells directly from raw impedance data streams, (ii) to capture single-cell signals that are hidden in the measured signals of coincident cells. The accuracy of the results and the high processing speed (fractions of ms per cell) demonstrate that neural networks can have an important role in impedance-based single-cell analysis.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d2lc00028h</identifier><identifier>PMID: 35353108</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Artificial Intelligence ; Cytometry ; Data transmission ; Dielectric properties ; Electric Impedance ; Flow Cytometry - methods ; Frequency analysis ; Impedance ; Microfluidics ; Neural networks ; Neural Networks, Computer ; Signal processing</subject><ispartof>Lab on a chip, 2022-05, Vol.22 (9), p.1714-1722</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-550d4998c18fd7c019722e64030629e35705ae010bb27b5db14de3b7700b658b3</citedby><cites>FETCH-LOGICAL-c351t-550d4998c18fd7c019722e64030629e35705ae010bb27b5db14de3b7700b658b3</cites><orcidid>0000-0001-6663-8603 ; 0000-0003-4937-1788 ; 0000-0003-3442-9924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35353108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caselli, Federica</creatorcontrib><creatorcontrib>Reale, Riccardo</creatorcontrib><creatorcontrib>De Ninno, Adele</creatorcontrib><creatorcontrib>Spencer, Daniel</creatorcontrib><creatorcontrib>Morgan, Hywel</creatorcontrib><creatorcontrib>Bisegna, Paolo</creatorcontrib><title>Deciphering impedance cytometry signals with neural networks</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Microfluidic impedance cytometry is a label-free technique for high-throughput single-cell analysis. Multi-frequency impedance measurements provide data that allows full characterisation of cells, linking electrical phenotype to individual biophysical properties. To efficiently extract the information embedded in the electrical signals, potentially in real-time, tailored signal processing is needed. Artificial intelligence approaches provide a promising new direction. Here we demonstrate the ability of neural networks to decipher impedance cytometry signals in two challenging scenarios: (i) to determine the intrinsic dielectric properties of single cells directly from raw impedance data streams, (ii) to capture single-cell signals that are hidden in the measured signals of coincident cells. The accuracy of the results and the high processing speed (fractions of ms per cell) demonstrate that neural networks can have an important role in impedance-based single-cell analysis.</description><subject>Artificial Intelligence</subject><subject>Cytometry</subject><subject>Data transmission</subject><subject>Dielectric properties</subject><subject>Electric Impedance</subject><subject>Flow Cytometry - methods</subject><subject>Frequency analysis</subject><subject>Impedance</subject><subject>Microfluidics</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Signal processing</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkM1LAzEQxYMotlYv_gGy4EWE1Umy2STgRVq_oOBFz8smO2237kdNdin9701t7UHm8Abmx2PeI-SSwh0Fru8LVlkAYGpxRIY0kTwGqvTxYddyQM68XwJQkaTqlAy4CENBDcnDBG25WqArm3lU1iss8sZiZDddW2PnNpEv501e-Whddouowd7lVZBu3bovf05OZuGGF3sdkc_np4_xazx9f3kbP05jywXtYiGgSLRWlqpZIe32IcYwTYBDyjRyIUHkCBSMYdKIwtCkQG6kBDCpUIaPyM3Od-Xa7x59l9Wlt1hVeYNt7zOWJiGYFloH9Pofumx7t00QKKEkBVA8ULc7yrrWe4ezbOXKOnebjEK27TSbsOn4t9PXAF_tLXtTY3FA_0rkP1fWb44</recordid><startdate>20220503</startdate><enddate>20220503</enddate><creator>Caselli, Federica</creator><creator>Reale, Riccardo</creator><creator>De Ninno, Adele</creator><creator>Spencer, Daniel</creator><creator>Morgan, Hywel</creator><creator>Bisegna, Paolo</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6663-8603</orcidid><orcidid>https://orcid.org/0000-0003-4937-1788</orcidid><orcidid>https://orcid.org/0000-0003-3442-9924</orcidid></search><sort><creationdate>20220503</creationdate><title>Deciphering impedance cytometry signals with neural networks</title><author>Caselli, Federica ; Reale, Riccardo ; De Ninno, Adele ; Spencer, Daniel ; Morgan, Hywel ; Bisegna, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-550d4998c18fd7c019722e64030629e35705ae010bb27b5db14de3b7700b658b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Cytometry</topic><topic>Data transmission</topic><topic>Dielectric properties</topic><topic>Electric Impedance</topic><topic>Flow Cytometry - methods</topic><topic>Frequency analysis</topic><topic>Impedance</topic><topic>Microfluidics</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caselli, Federica</creatorcontrib><creatorcontrib>Reale, Riccardo</creatorcontrib><creatorcontrib>De Ninno, Adele</creatorcontrib><creatorcontrib>Spencer, Daniel</creatorcontrib><creatorcontrib>Morgan, Hywel</creatorcontrib><creatorcontrib>Bisegna, Paolo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caselli, Federica</au><au>Reale, Riccardo</au><au>De Ninno, Adele</au><au>Spencer, Daniel</au><au>Morgan, Hywel</au><au>Bisegna, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering impedance cytometry signals with neural networks</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2022-05-03</date><risdate>2022</risdate><volume>22</volume><issue>9</issue><spage>1714</spage><epage>1722</epage><pages>1714-1722</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Microfluidic impedance cytometry is a label-free technique for high-throughput single-cell analysis. Multi-frequency impedance measurements provide data that allows full characterisation of cells, linking electrical phenotype to individual biophysical properties. To efficiently extract the information embedded in the electrical signals, potentially in real-time, tailored signal processing is needed. Artificial intelligence approaches provide a promising new direction. Here we demonstrate the ability of neural networks to decipher impedance cytometry signals in two challenging scenarios: (i) to determine the intrinsic dielectric properties of single cells directly from raw impedance data streams, (ii) to capture single-cell signals that are hidden in the measured signals of coincident cells. The accuracy of the results and the high processing speed (fractions of ms per cell) demonstrate that neural networks can have an important role in impedance-based single-cell analysis.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35353108</pmid><doi>10.1039/d2lc00028h</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6663-8603</orcidid><orcidid>https://orcid.org/0000-0003-4937-1788</orcidid><orcidid>https://orcid.org/0000-0003-3442-9924</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2022-05, Vol.22 (9), p.1714-1722 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_proquest_miscellaneous_2645469599 |
source | MEDLINE; Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Artificial Intelligence Cytometry Data transmission Dielectric properties Electric Impedance Flow Cytometry - methods Frequency analysis Impedance Microfluidics Neural networks Neural Networks, Computer Signal processing |
title | Deciphering impedance cytometry signals with neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A22%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20impedance%20cytometry%20signals%20with%20neural%20networks&rft.jtitle=Lab%20on%20a%20chip&rft.au=Caselli,%20Federica&rft.date=2022-05-03&rft.volume=22&rft.issue=9&rft.spage=1714&rft.epage=1722&rft.pages=1714-1722&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d2lc00028h&rft_dat=%3Cproquest_cross%3E2645469599%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2658710083&rft_id=info:pmid/35353108&rfr_iscdi=true |