Deciphering impedance cytometry signals with neural networks

Microfluidic impedance cytometry is a label-free technique for high-throughput single-cell analysis. Multi-frequency impedance measurements provide data that allows full characterisation of cells, linking electrical phenotype to individual biophysical properties. To efficiently extract the informati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2022-05, Vol.22 (9), p.1714-1722
Hauptverfasser: Caselli, Federica, Reale, Riccardo, De Ninno, Adele, Spencer, Daniel, Morgan, Hywel, Bisegna, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1722
container_issue 9
container_start_page 1714
container_title Lab on a chip
container_volume 22
creator Caselli, Federica
Reale, Riccardo
De Ninno, Adele
Spencer, Daniel
Morgan, Hywel
Bisegna, Paolo
description Microfluidic impedance cytometry is a label-free technique for high-throughput single-cell analysis. Multi-frequency impedance measurements provide data that allows full characterisation of cells, linking electrical phenotype to individual biophysical properties. To efficiently extract the information embedded in the electrical signals, potentially in real-time, tailored signal processing is needed. Artificial intelligence approaches provide a promising new direction. Here we demonstrate the ability of neural networks to decipher impedance cytometry signals in two challenging scenarios: (i) to determine the intrinsic dielectric properties of single cells directly from raw impedance data streams, (ii) to capture single-cell signals that are hidden in the measured signals of coincident cells. The accuracy of the results and the high processing speed (fractions of ms per cell) demonstrate that neural networks can have an important role in impedance-based single-cell analysis.
doi_str_mv 10.1039/d2lc00028h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2645469599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645469599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-550d4998c18fd7c019722e64030629e35705ae010bb27b5db14de3b7700b658b3</originalsourceid><addsrcrecordid>eNpdkM1LAzEQxYMotlYv_gGy4EWE1Umy2STgRVq_oOBFz8smO2237kdNdin9701t7UHm8Abmx2PeI-SSwh0Fru8LVlkAYGpxRIY0kTwGqvTxYddyQM68XwJQkaTqlAy4CENBDcnDBG25WqArm3lU1iss8sZiZDddW2PnNpEv501e-Whddouowd7lVZBu3bovf05OZuGGF3sdkc_np4_xazx9f3kbP05jywXtYiGgSLRWlqpZIe32IcYwTYBDyjRyIUHkCBSMYdKIwtCkQG6kBDCpUIaPyM3Od-Xa7x59l9Wlt1hVeYNt7zOWJiGYFloH9Pofumx7t00QKKEkBVA8ULc7yrrWe4ezbOXKOnebjEK27TSbsOn4t9PXAF_tLXtTY3FA_0rkP1fWb44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658710083</pqid></control><display><type>article</type><title>Deciphering impedance cytometry signals with neural networks</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Caselli, Federica ; Reale, Riccardo ; De Ninno, Adele ; Spencer, Daniel ; Morgan, Hywel ; Bisegna, Paolo</creator><creatorcontrib>Caselli, Federica ; Reale, Riccardo ; De Ninno, Adele ; Spencer, Daniel ; Morgan, Hywel ; Bisegna, Paolo</creatorcontrib><description>Microfluidic impedance cytometry is a label-free technique for high-throughput single-cell analysis. Multi-frequency impedance measurements provide data that allows full characterisation of cells, linking electrical phenotype to individual biophysical properties. To efficiently extract the information embedded in the electrical signals, potentially in real-time, tailored signal processing is needed. Artificial intelligence approaches provide a promising new direction. Here we demonstrate the ability of neural networks to decipher impedance cytometry signals in two challenging scenarios: (i) to determine the intrinsic dielectric properties of single cells directly from raw impedance data streams, (ii) to capture single-cell signals that are hidden in the measured signals of coincident cells. The accuracy of the results and the high processing speed (fractions of ms per cell) demonstrate that neural networks can have an important role in impedance-based single-cell analysis.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d2lc00028h</identifier><identifier>PMID: 35353108</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Artificial Intelligence ; Cytometry ; Data transmission ; Dielectric properties ; Electric Impedance ; Flow Cytometry - methods ; Frequency analysis ; Impedance ; Microfluidics ; Neural networks ; Neural Networks, Computer ; Signal processing</subject><ispartof>Lab on a chip, 2022-05, Vol.22 (9), p.1714-1722</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-550d4998c18fd7c019722e64030629e35705ae010bb27b5db14de3b7700b658b3</citedby><cites>FETCH-LOGICAL-c351t-550d4998c18fd7c019722e64030629e35705ae010bb27b5db14de3b7700b658b3</cites><orcidid>0000-0001-6663-8603 ; 0000-0003-4937-1788 ; 0000-0003-3442-9924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35353108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caselli, Federica</creatorcontrib><creatorcontrib>Reale, Riccardo</creatorcontrib><creatorcontrib>De Ninno, Adele</creatorcontrib><creatorcontrib>Spencer, Daniel</creatorcontrib><creatorcontrib>Morgan, Hywel</creatorcontrib><creatorcontrib>Bisegna, Paolo</creatorcontrib><title>Deciphering impedance cytometry signals with neural networks</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Microfluidic impedance cytometry is a label-free technique for high-throughput single-cell analysis. Multi-frequency impedance measurements provide data that allows full characterisation of cells, linking electrical phenotype to individual biophysical properties. To efficiently extract the information embedded in the electrical signals, potentially in real-time, tailored signal processing is needed. Artificial intelligence approaches provide a promising new direction. Here we demonstrate the ability of neural networks to decipher impedance cytometry signals in two challenging scenarios: (i) to determine the intrinsic dielectric properties of single cells directly from raw impedance data streams, (ii) to capture single-cell signals that are hidden in the measured signals of coincident cells. The accuracy of the results and the high processing speed (fractions of ms per cell) demonstrate that neural networks can have an important role in impedance-based single-cell analysis.</description><subject>Artificial Intelligence</subject><subject>Cytometry</subject><subject>Data transmission</subject><subject>Dielectric properties</subject><subject>Electric Impedance</subject><subject>Flow Cytometry - methods</subject><subject>Frequency analysis</subject><subject>Impedance</subject><subject>Microfluidics</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Signal processing</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkM1LAzEQxYMotlYv_gGy4EWE1Umy2STgRVq_oOBFz8smO2237kdNdin9701t7UHm8Abmx2PeI-SSwh0Fru8LVlkAYGpxRIY0kTwGqvTxYddyQM68XwJQkaTqlAy4CENBDcnDBG25WqArm3lU1iss8sZiZDddW2PnNpEv501e-Whddouowd7lVZBu3bovf05OZuGGF3sdkc_np4_xazx9f3kbP05jywXtYiGgSLRWlqpZIe32IcYwTYBDyjRyIUHkCBSMYdKIwtCkQG6kBDCpUIaPyM3Od-Xa7x59l9Wlt1hVeYNt7zOWJiGYFloH9Pofumx7t00QKKEkBVA8ULc7yrrWe4ezbOXKOnebjEK27TSbsOn4t9PXAF_tLXtTY3FA_0rkP1fWb44</recordid><startdate>20220503</startdate><enddate>20220503</enddate><creator>Caselli, Federica</creator><creator>Reale, Riccardo</creator><creator>De Ninno, Adele</creator><creator>Spencer, Daniel</creator><creator>Morgan, Hywel</creator><creator>Bisegna, Paolo</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6663-8603</orcidid><orcidid>https://orcid.org/0000-0003-4937-1788</orcidid><orcidid>https://orcid.org/0000-0003-3442-9924</orcidid></search><sort><creationdate>20220503</creationdate><title>Deciphering impedance cytometry signals with neural networks</title><author>Caselli, Federica ; Reale, Riccardo ; De Ninno, Adele ; Spencer, Daniel ; Morgan, Hywel ; Bisegna, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-550d4998c18fd7c019722e64030629e35705ae010bb27b5db14de3b7700b658b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Cytometry</topic><topic>Data transmission</topic><topic>Dielectric properties</topic><topic>Electric Impedance</topic><topic>Flow Cytometry - methods</topic><topic>Frequency analysis</topic><topic>Impedance</topic><topic>Microfluidics</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caselli, Federica</creatorcontrib><creatorcontrib>Reale, Riccardo</creatorcontrib><creatorcontrib>De Ninno, Adele</creatorcontrib><creatorcontrib>Spencer, Daniel</creatorcontrib><creatorcontrib>Morgan, Hywel</creatorcontrib><creatorcontrib>Bisegna, Paolo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caselli, Federica</au><au>Reale, Riccardo</au><au>De Ninno, Adele</au><au>Spencer, Daniel</au><au>Morgan, Hywel</au><au>Bisegna, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering impedance cytometry signals with neural networks</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2022-05-03</date><risdate>2022</risdate><volume>22</volume><issue>9</issue><spage>1714</spage><epage>1722</epage><pages>1714-1722</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Microfluidic impedance cytometry is a label-free technique for high-throughput single-cell analysis. Multi-frequency impedance measurements provide data that allows full characterisation of cells, linking electrical phenotype to individual biophysical properties. To efficiently extract the information embedded in the electrical signals, potentially in real-time, tailored signal processing is needed. Artificial intelligence approaches provide a promising new direction. Here we demonstrate the ability of neural networks to decipher impedance cytometry signals in two challenging scenarios: (i) to determine the intrinsic dielectric properties of single cells directly from raw impedance data streams, (ii) to capture single-cell signals that are hidden in the measured signals of coincident cells. The accuracy of the results and the high processing speed (fractions of ms per cell) demonstrate that neural networks can have an important role in impedance-based single-cell analysis.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35353108</pmid><doi>10.1039/d2lc00028h</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6663-8603</orcidid><orcidid>https://orcid.org/0000-0003-4937-1788</orcidid><orcidid>https://orcid.org/0000-0003-3442-9924</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2022-05, Vol.22 (9), p.1714-1722
issn 1473-0197
1473-0189
language eng
recordid cdi_proquest_miscellaneous_2645469599
source MEDLINE; Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Artificial Intelligence
Cytometry
Data transmission
Dielectric properties
Electric Impedance
Flow Cytometry - methods
Frequency analysis
Impedance
Microfluidics
Neural networks
Neural Networks, Computer
Signal processing
title Deciphering impedance cytometry signals with neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A22%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20impedance%20cytometry%20signals%20with%20neural%20networks&rft.jtitle=Lab%20on%20a%20chip&rft.au=Caselli,%20Federica&rft.date=2022-05-03&rft.volume=22&rft.issue=9&rft.spage=1714&rft.epage=1722&rft.pages=1714-1722&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d2lc00028h&rft_dat=%3Cproquest_cross%3E2645469599%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2658710083&rft_id=info:pmid/35353108&rfr_iscdi=true