External validation of an artificial intelligence tool for radiographic knee osteoarthritis severity classification
To externally validate an artificial intelligence (AI) tool for radiographic knee osteoarthritis severity classification on a clinical dataset. This retrospective, consecutive patient sample, external validation study used weight-bearing, non-fixed-flexion posterior-anterior knee radiographs from a...
Gespeichert in:
Veröffentlicht in: | European journal of radiology 2022-05, Vol.150, p.110249-110249, Article 110249 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110249 |
---|---|
container_issue | |
container_start_page | 110249 |
container_title | European journal of radiology |
container_volume | 150 |
creator | Brejnebøl, Mathias Willadsen Hansen, Philip Nybing, Janus Uhd Bachmann, Rikke Ratjen, Ulrik Hansen, Ida Vibeke Lenskjold, Anders Axelsen, Martin Lundemann, Michael Boesen, Mikael |
description | To externally validate an artificial intelligence (AI) tool for radiographic knee osteoarthritis severity classification on a clinical dataset.
This retrospective, consecutive patient sample, external validation study used weight-bearing, non-fixed-flexion posterior-anterior knee radiographs from a clinical production PACS. The index test was ordinal Kellgren-Lawrence grading by an AI tool, two musculoskeletal radiology consultants, two reporting technologists, and two resident radiologists. Grading was repeated by all readers after at least four weeks. Reference test was the consensus of the two consultants. The primary outcome was quadratic weighted kappa. Secondary outcomes were ordinal weighted accuracy, multiclass accuracy and F1-score.
50 consecutive patients between September 24, 2019 and October 22, 2019 were retrospectively included (3 excluded) totaling 99 knees (1 excluded). Quadratic weighted kappa for the AI tool and the consultant consensus was 0.88 CI95% (0.82–0.92). Agreement between the consultants was 0.89 CI95% (0.85–0.93). Intra-rater agreements for the consultants were 0.96 CI95% (0.94–0.98) and 0.94 CI95% (0.91–0.96) respectively. For the AI tool it was 1 CI95% (1–1). For the AI tool, ordinal weighted accuracy was 97.8% CI95% (96.9–98.6 %). Average multiclass accuracy and F1-score were 84% (83/99) CI95% (77–91%) and 0.67 CI95% (0.51–0.81).
The AI tool achieved the same good-to-excellent agreement with the radiology consultant consensus for radiographic knee osteoarthritis severity classification as the consultants did with each other. |
doi_str_mv | 10.1016/j.ejrad.2022.110249 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2644019735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0720048X22000997</els_id><sourcerecordid>2644019735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-63331ec5772fec922b1b61061ef1d21f0b94a2624762d531e1d709e21e06ac7d3</originalsourceid><addsrcrecordid>eNp9kMtqGzEUhkVpqR0nTxAoWnYzzpFGM_IsuighbQKBbFroTsjSmeQ445ErySZ5-8iXdpmVDui_8H-MXQqYCxDt1WqOq2j9XIKUcyFAqu4Dm4qFlpXWUn9kU9ASKlCLPxN2ltIKABrVyc9sUjd1veiaZsrSzUvGONqB7-xA3mYKIw89tyO3MVNPjsofjRmHgR5xdMhzCAPvQ-SlnMJjtJsncvx5ROQhZQzF9xQpU-IJd1iuV-4Gm9I-7JB_zj71dkh4cXpn7PePm1_Xt9X9w8-76-_3lVOgctXWdS3QNWVMj66TcimWrYBWYC-8FD0sO2VlK5VupW-KVHgNHUqB0FqnfT1jX4-5mxj-bjFls6bkyhA7YtgmI1ulQHS60Jix-ih1MaQUsTebSGsbX40As6dtVuZA2-xpmyPt4vpyKtgu1-j_e_7hLYJvRwGWmTvCaJKjPURPEV02PtC7BW9FSZOf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644019735</pqid></control><display><type>article</type><title>External validation of an artificial intelligence tool for radiographic knee osteoarthritis severity classification</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Brejnebøl, Mathias Willadsen ; Hansen, Philip ; Nybing, Janus Uhd ; Bachmann, Rikke ; Ratjen, Ulrik ; Hansen, Ida Vibeke ; Lenskjold, Anders ; Axelsen, Martin ; Lundemann, Michael ; Boesen, Mikael</creator><creatorcontrib>Brejnebøl, Mathias Willadsen ; Hansen, Philip ; Nybing, Janus Uhd ; Bachmann, Rikke ; Ratjen, Ulrik ; Hansen, Ida Vibeke ; Lenskjold, Anders ; Axelsen, Martin ; Lundemann, Michael ; Boesen, Mikael</creatorcontrib><description>To externally validate an artificial intelligence (AI) tool for radiographic knee osteoarthritis severity classification on a clinical dataset.
This retrospective, consecutive patient sample, external validation study used weight-bearing, non-fixed-flexion posterior-anterior knee radiographs from a clinical production PACS. The index test was ordinal Kellgren-Lawrence grading by an AI tool, two musculoskeletal radiology consultants, two reporting technologists, and two resident radiologists. Grading was repeated by all readers after at least four weeks. Reference test was the consensus of the two consultants. The primary outcome was quadratic weighted kappa. Secondary outcomes were ordinal weighted accuracy, multiclass accuracy and F1-score.
50 consecutive patients between September 24, 2019 and October 22, 2019 were retrospectively included (3 excluded) totaling 99 knees (1 excluded). Quadratic weighted kappa for the AI tool and the consultant consensus was 0.88 CI95% (0.82–0.92). Agreement between the consultants was 0.89 CI95% (0.85–0.93). Intra-rater agreements for the consultants were 0.96 CI95% (0.94–0.98) and 0.94 CI95% (0.91–0.96) respectively. For the AI tool it was 1 CI95% (1–1). For the AI tool, ordinal weighted accuracy was 97.8% CI95% (96.9–98.6 %). Average multiclass accuracy and F1-score were 84% (83/99) CI95% (77–91%) and 0.67 CI95% (0.51–0.81).
The AI tool achieved the same good-to-excellent agreement with the radiology consultant consensus for radiographic knee osteoarthritis severity classification as the consultants did with each other.</description><identifier>ISSN: 0720-048X</identifier><identifier>EISSN: 1872-7727</identifier><identifier>DOI: 10.1016/j.ejrad.2022.110249</identifier><identifier>PMID: 35338955</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Artificial Intelligence ; Conventional radiography ; External validation ; Humans ; Inter-rater agreement ; Knee ; Knee osteoarthritis ; Osteoarthritis, Knee - diagnostic imaging ; Radiography ; Retrospective Studies</subject><ispartof>European journal of radiology, 2022-05, Vol.150, p.110249-110249, Article 110249</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-63331ec5772fec922b1b61061ef1d21f0b94a2624762d531e1d709e21e06ac7d3</citedby><cites>FETCH-LOGICAL-c404t-63331ec5772fec922b1b61061ef1d21f0b94a2624762d531e1d709e21e06ac7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0720048X22000997$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35338955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brejnebøl, Mathias Willadsen</creatorcontrib><creatorcontrib>Hansen, Philip</creatorcontrib><creatorcontrib>Nybing, Janus Uhd</creatorcontrib><creatorcontrib>Bachmann, Rikke</creatorcontrib><creatorcontrib>Ratjen, Ulrik</creatorcontrib><creatorcontrib>Hansen, Ida Vibeke</creatorcontrib><creatorcontrib>Lenskjold, Anders</creatorcontrib><creatorcontrib>Axelsen, Martin</creatorcontrib><creatorcontrib>Lundemann, Michael</creatorcontrib><creatorcontrib>Boesen, Mikael</creatorcontrib><title>External validation of an artificial intelligence tool for radiographic knee osteoarthritis severity classification</title><title>European journal of radiology</title><addtitle>Eur J Radiol</addtitle><description>To externally validate an artificial intelligence (AI) tool for radiographic knee osteoarthritis severity classification on a clinical dataset.
This retrospective, consecutive patient sample, external validation study used weight-bearing, non-fixed-flexion posterior-anterior knee radiographs from a clinical production PACS. The index test was ordinal Kellgren-Lawrence grading by an AI tool, two musculoskeletal radiology consultants, two reporting technologists, and two resident radiologists. Grading was repeated by all readers after at least four weeks. Reference test was the consensus of the two consultants. The primary outcome was quadratic weighted kappa. Secondary outcomes were ordinal weighted accuracy, multiclass accuracy and F1-score.
50 consecutive patients between September 24, 2019 and October 22, 2019 were retrospectively included (3 excluded) totaling 99 knees (1 excluded). Quadratic weighted kappa for the AI tool and the consultant consensus was 0.88 CI95% (0.82–0.92). Agreement between the consultants was 0.89 CI95% (0.85–0.93). Intra-rater agreements for the consultants were 0.96 CI95% (0.94–0.98) and 0.94 CI95% (0.91–0.96) respectively. For the AI tool it was 1 CI95% (1–1). For the AI tool, ordinal weighted accuracy was 97.8% CI95% (96.9–98.6 %). Average multiclass accuracy and F1-score were 84% (83/99) CI95% (77–91%) and 0.67 CI95% (0.51–0.81).
The AI tool achieved the same good-to-excellent agreement with the radiology consultant consensus for radiographic knee osteoarthritis severity classification as the consultants did with each other.</description><subject>Artificial Intelligence</subject><subject>Conventional radiography</subject><subject>External validation</subject><subject>Humans</subject><subject>Inter-rater agreement</subject><subject>Knee</subject><subject>Knee osteoarthritis</subject><subject>Osteoarthritis, Knee - diagnostic imaging</subject><subject>Radiography</subject><subject>Retrospective Studies</subject><issn>0720-048X</issn><issn>1872-7727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtqGzEUhkVpqR0nTxAoWnYzzpFGM_IsuighbQKBbFroTsjSmeQ445ErySZ5-8iXdpmVDui_8H-MXQqYCxDt1WqOq2j9XIKUcyFAqu4Dm4qFlpXWUn9kU9ASKlCLPxN2ltIKABrVyc9sUjd1veiaZsrSzUvGONqB7-xA3mYKIw89tyO3MVNPjsofjRmHgR5xdMhzCAPvQ-SlnMJjtJsncvx5ROQhZQzF9xQpU-IJd1iuV-4Gm9I-7JB_zj71dkh4cXpn7PePm1_Xt9X9w8-76-_3lVOgctXWdS3QNWVMj66TcimWrYBWYC-8FD0sO2VlK5VupW-KVHgNHUqB0FqnfT1jX4-5mxj-bjFls6bkyhA7YtgmI1ulQHS60Jix-ih1MaQUsTebSGsbX40As6dtVuZA2-xpmyPt4vpyKtgu1-j_e_7hLYJvRwGWmTvCaJKjPURPEV02PtC7BW9FSZOf</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Brejnebøl, Mathias Willadsen</creator><creator>Hansen, Philip</creator><creator>Nybing, Janus Uhd</creator><creator>Bachmann, Rikke</creator><creator>Ratjen, Ulrik</creator><creator>Hansen, Ida Vibeke</creator><creator>Lenskjold, Anders</creator><creator>Axelsen, Martin</creator><creator>Lundemann, Michael</creator><creator>Boesen, Mikael</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202205</creationdate><title>External validation of an artificial intelligence tool for radiographic knee osteoarthritis severity classification</title><author>Brejnebøl, Mathias Willadsen ; Hansen, Philip ; Nybing, Janus Uhd ; Bachmann, Rikke ; Ratjen, Ulrik ; Hansen, Ida Vibeke ; Lenskjold, Anders ; Axelsen, Martin ; Lundemann, Michael ; Boesen, Mikael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-63331ec5772fec922b1b61061ef1d21f0b94a2624762d531e1d709e21e06ac7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Conventional radiography</topic><topic>External validation</topic><topic>Humans</topic><topic>Inter-rater agreement</topic><topic>Knee</topic><topic>Knee osteoarthritis</topic><topic>Osteoarthritis, Knee - diagnostic imaging</topic><topic>Radiography</topic><topic>Retrospective Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brejnebøl, Mathias Willadsen</creatorcontrib><creatorcontrib>Hansen, Philip</creatorcontrib><creatorcontrib>Nybing, Janus Uhd</creatorcontrib><creatorcontrib>Bachmann, Rikke</creatorcontrib><creatorcontrib>Ratjen, Ulrik</creatorcontrib><creatorcontrib>Hansen, Ida Vibeke</creatorcontrib><creatorcontrib>Lenskjold, Anders</creatorcontrib><creatorcontrib>Axelsen, Martin</creatorcontrib><creatorcontrib>Lundemann, Michael</creatorcontrib><creatorcontrib>Boesen, Mikael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brejnebøl, Mathias Willadsen</au><au>Hansen, Philip</au><au>Nybing, Janus Uhd</au><au>Bachmann, Rikke</au><au>Ratjen, Ulrik</au><au>Hansen, Ida Vibeke</au><au>Lenskjold, Anders</au><au>Axelsen, Martin</au><au>Lundemann, Michael</au><au>Boesen, Mikael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>External validation of an artificial intelligence tool for radiographic knee osteoarthritis severity classification</atitle><jtitle>European journal of radiology</jtitle><addtitle>Eur J Radiol</addtitle><date>2022-05</date><risdate>2022</risdate><volume>150</volume><spage>110249</spage><epage>110249</epage><pages>110249-110249</pages><artnum>110249</artnum><issn>0720-048X</issn><eissn>1872-7727</eissn><abstract>To externally validate an artificial intelligence (AI) tool for radiographic knee osteoarthritis severity classification on a clinical dataset.
This retrospective, consecutive patient sample, external validation study used weight-bearing, non-fixed-flexion posterior-anterior knee radiographs from a clinical production PACS. The index test was ordinal Kellgren-Lawrence grading by an AI tool, two musculoskeletal radiology consultants, two reporting technologists, and two resident radiologists. Grading was repeated by all readers after at least four weeks. Reference test was the consensus of the two consultants. The primary outcome was quadratic weighted kappa. Secondary outcomes were ordinal weighted accuracy, multiclass accuracy and F1-score.
50 consecutive patients between September 24, 2019 and October 22, 2019 were retrospectively included (3 excluded) totaling 99 knees (1 excluded). Quadratic weighted kappa for the AI tool and the consultant consensus was 0.88 CI95% (0.82–0.92). Agreement between the consultants was 0.89 CI95% (0.85–0.93). Intra-rater agreements for the consultants were 0.96 CI95% (0.94–0.98) and 0.94 CI95% (0.91–0.96) respectively. For the AI tool it was 1 CI95% (1–1). For the AI tool, ordinal weighted accuracy was 97.8% CI95% (96.9–98.6 %). Average multiclass accuracy and F1-score were 84% (83/99) CI95% (77–91%) and 0.67 CI95% (0.51–0.81).
The AI tool achieved the same good-to-excellent agreement with the radiology consultant consensus for radiographic knee osteoarthritis severity classification as the consultants did with each other.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>35338955</pmid><doi>10.1016/j.ejrad.2022.110249</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0720-048X |
ispartof | European journal of radiology, 2022-05, Vol.150, p.110249-110249, Article 110249 |
issn | 0720-048X 1872-7727 |
language | eng |
recordid | cdi_proquest_miscellaneous_2644019735 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Artificial Intelligence Conventional radiography External validation Humans Inter-rater agreement Knee Knee osteoarthritis Osteoarthritis, Knee - diagnostic imaging Radiography Retrospective Studies |
title | External validation of an artificial intelligence tool for radiographic knee osteoarthritis severity classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A04%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=External%20validation%20of%20an%20artificial%20intelligence%20tool%20for%20radiographic%20knee%20osteoarthritis%20severity%20classification&rft.jtitle=European%20journal%20of%20radiology&rft.au=Brejneb%C3%B8l,%20Mathias%20Willadsen&rft.date=2022-05&rft.volume=150&rft.spage=110249&rft.epage=110249&rft.pages=110249-110249&rft.artnum=110249&rft.issn=0720-048X&rft.eissn=1872-7727&rft_id=info:doi/10.1016/j.ejrad.2022.110249&rft_dat=%3Cproquest_cross%3E2644019735%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2644019735&rft_id=info:pmid/35338955&rft_els_id=S0720048X22000997&rfr_iscdi=true |