External validation of an artificial intelligence tool for radiographic knee osteoarthritis severity classification

To externally validate an artificial intelligence (AI) tool for radiographic knee osteoarthritis severity classification on a clinical dataset. This retrospective, consecutive patient sample, external validation study used weight-bearing, non-fixed-flexion posterior-anterior knee radiographs from a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of radiology 2022-05, Vol.150, p.110249-110249, Article 110249
Hauptverfasser: Brejnebøl, Mathias Willadsen, Hansen, Philip, Nybing, Janus Uhd, Bachmann, Rikke, Ratjen, Ulrik, Hansen, Ida Vibeke, Lenskjold, Anders, Axelsen, Martin, Lundemann, Michael, Boesen, Mikael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110249
container_issue
container_start_page 110249
container_title European journal of radiology
container_volume 150
creator Brejnebøl, Mathias Willadsen
Hansen, Philip
Nybing, Janus Uhd
Bachmann, Rikke
Ratjen, Ulrik
Hansen, Ida Vibeke
Lenskjold, Anders
Axelsen, Martin
Lundemann, Michael
Boesen, Mikael
description To externally validate an artificial intelligence (AI) tool for radiographic knee osteoarthritis severity classification on a clinical dataset. This retrospective, consecutive patient sample, external validation study used weight-bearing, non-fixed-flexion posterior-anterior knee radiographs from a clinical production PACS. The index test was ordinal Kellgren-Lawrence grading by an AI tool, two musculoskeletal radiology consultants, two reporting technologists, and two resident radiologists. Grading was repeated by all readers after at least four weeks. Reference test was the consensus of the two consultants. The primary outcome was quadratic weighted kappa. Secondary outcomes were ordinal weighted accuracy, multiclass accuracy and F1-score. 50 consecutive patients between September 24, 2019 and October 22, 2019 were retrospectively included (3 excluded) totaling 99 knees (1 excluded). Quadratic weighted kappa for the AI tool and the consultant consensus was 0.88 CI95% (0.82–0.92). Agreement between the consultants was 0.89 CI95% (0.85–0.93). Intra-rater agreements for the consultants were 0.96 CI95% (0.94–0.98) and 0.94 CI95% (0.91–0.96) respectively. For the AI tool it was 1 CI95% (1–1). For the AI tool, ordinal weighted accuracy was 97.8% CI95% (96.9–98.6 %). Average multiclass accuracy and F1-score were 84% (83/99) CI95% (77–91%) and 0.67 CI95% (0.51–0.81). The AI tool achieved the same good-to-excellent agreement with the radiology consultant consensus for radiographic knee osteoarthritis severity classification as the consultants did with each other.
doi_str_mv 10.1016/j.ejrad.2022.110249
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2644019735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0720048X22000997</els_id><sourcerecordid>2644019735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-63331ec5772fec922b1b61061ef1d21f0b94a2624762d531e1d709e21e06ac7d3</originalsourceid><addsrcrecordid>eNp9kMtqGzEUhkVpqR0nTxAoWnYzzpFGM_IsuighbQKBbFroTsjSmeQ445ErySZ5-8iXdpmVDui_8H-MXQqYCxDt1WqOq2j9XIKUcyFAqu4Dm4qFlpXWUn9kU9ASKlCLPxN2ltIKABrVyc9sUjd1veiaZsrSzUvGONqB7-xA3mYKIw89tyO3MVNPjsofjRmHgR5xdMhzCAPvQ-SlnMJjtJsncvx5ROQhZQzF9xQpU-IJd1iuV-4Gm9I-7JB_zj71dkh4cXpn7PePm1_Xt9X9w8-76-_3lVOgctXWdS3QNWVMj66TcimWrYBWYC-8FD0sO2VlK5VupW-KVHgNHUqB0FqnfT1jX4-5mxj-bjFls6bkyhA7YtgmI1ulQHS60Jix-ih1MaQUsTebSGsbX40As6dtVuZA2-xpmyPt4vpyKtgu1-j_e_7hLYJvRwGWmTvCaJKjPURPEV02PtC7BW9FSZOf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644019735</pqid></control><display><type>article</type><title>External validation of an artificial intelligence tool for radiographic knee osteoarthritis severity classification</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Brejnebøl, Mathias Willadsen ; Hansen, Philip ; Nybing, Janus Uhd ; Bachmann, Rikke ; Ratjen, Ulrik ; Hansen, Ida Vibeke ; Lenskjold, Anders ; Axelsen, Martin ; Lundemann, Michael ; Boesen, Mikael</creator><creatorcontrib>Brejnebøl, Mathias Willadsen ; Hansen, Philip ; Nybing, Janus Uhd ; Bachmann, Rikke ; Ratjen, Ulrik ; Hansen, Ida Vibeke ; Lenskjold, Anders ; Axelsen, Martin ; Lundemann, Michael ; Boesen, Mikael</creatorcontrib><description>To externally validate an artificial intelligence (AI) tool for radiographic knee osteoarthritis severity classification on a clinical dataset. This retrospective, consecutive patient sample, external validation study used weight-bearing, non-fixed-flexion posterior-anterior knee radiographs from a clinical production PACS. The index test was ordinal Kellgren-Lawrence grading by an AI tool, two musculoskeletal radiology consultants, two reporting technologists, and two resident radiologists. Grading was repeated by all readers after at least four weeks. Reference test was the consensus of the two consultants. The primary outcome was quadratic weighted kappa. Secondary outcomes were ordinal weighted accuracy, multiclass accuracy and F1-score. 50 consecutive patients between September 24, 2019 and October 22, 2019 were retrospectively included (3 excluded) totaling 99 knees (1 excluded). Quadratic weighted kappa for the AI tool and the consultant consensus was 0.88 CI95% (0.82–0.92). Agreement between the consultants was 0.89 CI95% (0.85–0.93). Intra-rater agreements for the consultants were 0.96 CI95% (0.94–0.98) and 0.94 CI95% (0.91–0.96) respectively. For the AI tool it was 1 CI95% (1–1). For the AI tool, ordinal weighted accuracy was 97.8% CI95% (96.9–98.6 %). Average multiclass accuracy and F1-score were 84% (83/99) CI95% (77–91%) and 0.67 CI95% (0.51–0.81). The AI tool achieved the same good-to-excellent agreement with the radiology consultant consensus for radiographic knee osteoarthritis severity classification as the consultants did with each other.</description><identifier>ISSN: 0720-048X</identifier><identifier>EISSN: 1872-7727</identifier><identifier>DOI: 10.1016/j.ejrad.2022.110249</identifier><identifier>PMID: 35338955</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Artificial Intelligence ; Conventional radiography ; External validation ; Humans ; Inter-rater agreement ; Knee ; Knee osteoarthritis ; Osteoarthritis, Knee - diagnostic imaging ; Radiography ; Retrospective Studies</subject><ispartof>European journal of radiology, 2022-05, Vol.150, p.110249-110249, Article 110249</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-63331ec5772fec922b1b61061ef1d21f0b94a2624762d531e1d709e21e06ac7d3</citedby><cites>FETCH-LOGICAL-c404t-63331ec5772fec922b1b61061ef1d21f0b94a2624762d531e1d709e21e06ac7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0720048X22000997$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35338955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brejnebøl, Mathias Willadsen</creatorcontrib><creatorcontrib>Hansen, Philip</creatorcontrib><creatorcontrib>Nybing, Janus Uhd</creatorcontrib><creatorcontrib>Bachmann, Rikke</creatorcontrib><creatorcontrib>Ratjen, Ulrik</creatorcontrib><creatorcontrib>Hansen, Ida Vibeke</creatorcontrib><creatorcontrib>Lenskjold, Anders</creatorcontrib><creatorcontrib>Axelsen, Martin</creatorcontrib><creatorcontrib>Lundemann, Michael</creatorcontrib><creatorcontrib>Boesen, Mikael</creatorcontrib><title>External validation of an artificial intelligence tool for radiographic knee osteoarthritis severity classification</title><title>European journal of radiology</title><addtitle>Eur J Radiol</addtitle><description>To externally validate an artificial intelligence (AI) tool for radiographic knee osteoarthritis severity classification on a clinical dataset. This retrospective, consecutive patient sample, external validation study used weight-bearing, non-fixed-flexion posterior-anterior knee radiographs from a clinical production PACS. The index test was ordinal Kellgren-Lawrence grading by an AI tool, two musculoskeletal radiology consultants, two reporting technologists, and two resident radiologists. Grading was repeated by all readers after at least four weeks. Reference test was the consensus of the two consultants. The primary outcome was quadratic weighted kappa. Secondary outcomes were ordinal weighted accuracy, multiclass accuracy and F1-score. 50 consecutive patients between September 24, 2019 and October 22, 2019 were retrospectively included (3 excluded) totaling 99 knees (1 excluded). Quadratic weighted kappa for the AI tool and the consultant consensus was 0.88 CI95% (0.82–0.92). Agreement between the consultants was 0.89 CI95% (0.85–0.93). Intra-rater agreements for the consultants were 0.96 CI95% (0.94–0.98) and 0.94 CI95% (0.91–0.96) respectively. For the AI tool it was 1 CI95% (1–1). For the AI tool, ordinal weighted accuracy was 97.8% CI95% (96.9–98.6 %). Average multiclass accuracy and F1-score were 84% (83/99) CI95% (77–91%) and 0.67 CI95% (0.51–0.81). The AI tool achieved the same good-to-excellent agreement with the radiology consultant consensus for radiographic knee osteoarthritis severity classification as the consultants did with each other.</description><subject>Artificial Intelligence</subject><subject>Conventional radiography</subject><subject>External validation</subject><subject>Humans</subject><subject>Inter-rater agreement</subject><subject>Knee</subject><subject>Knee osteoarthritis</subject><subject>Osteoarthritis, Knee - diagnostic imaging</subject><subject>Radiography</subject><subject>Retrospective Studies</subject><issn>0720-048X</issn><issn>1872-7727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtqGzEUhkVpqR0nTxAoWnYzzpFGM_IsuighbQKBbFroTsjSmeQ445ErySZ5-8iXdpmVDui_8H-MXQqYCxDt1WqOq2j9XIKUcyFAqu4Dm4qFlpXWUn9kU9ASKlCLPxN2ltIKABrVyc9sUjd1veiaZsrSzUvGONqB7-xA3mYKIw89tyO3MVNPjsofjRmHgR5xdMhzCAPvQ-SlnMJjtJsncvx5ROQhZQzF9xQpU-IJd1iuV-4Gm9I-7JB_zj71dkh4cXpn7PePm1_Xt9X9w8-76-_3lVOgctXWdS3QNWVMj66TcimWrYBWYC-8FD0sO2VlK5VupW-KVHgNHUqB0FqnfT1jX4-5mxj-bjFls6bkyhA7YtgmI1ulQHS60Jix-ih1MaQUsTebSGsbX40As6dtVuZA2-xpmyPt4vpyKtgu1-j_e_7hLYJvRwGWmTvCaJKjPURPEV02PtC7BW9FSZOf</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Brejnebøl, Mathias Willadsen</creator><creator>Hansen, Philip</creator><creator>Nybing, Janus Uhd</creator><creator>Bachmann, Rikke</creator><creator>Ratjen, Ulrik</creator><creator>Hansen, Ida Vibeke</creator><creator>Lenskjold, Anders</creator><creator>Axelsen, Martin</creator><creator>Lundemann, Michael</creator><creator>Boesen, Mikael</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202205</creationdate><title>External validation of an artificial intelligence tool for radiographic knee osteoarthritis severity classification</title><author>Brejnebøl, Mathias Willadsen ; Hansen, Philip ; Nybing, Janus Uhd ; Bachmann, Rikke ; Ratjen, Ulrik ; Hansen, Ida Vibeke ; Lenskjold, Anders ; Axelsen, Martin ; Lundemann, Michael ; Boesen, Mikael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-63331ec5772fec922b1b61061ef1d21f0b94a2624762d531e1d709e21e06ac7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Conventional radiography</topic><topic>External validation</topic><topic>Humans</topic><topic>Inter-rater agreement</topic><topic>Knee</topic><topic>Knee osteoarthritis</topic><topic>Osteoarthritis, Knee - diagnostic imaging</topic><topic>Radiography</topic><topic>Retrospective Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brejnebøl, Mathias Willadsen</creatorcontrib><creatorcontrib>Hansen, Philip</creatorcontrib><creatorcontrib>Nybing, Janus Uhd</creatorcontrib><creatorcontrib>Bachmann, Rikke</creatorcontrib><creatorcontrib>Ratjen, Ulrik</creatorcontrib><creatorcontrib>Hansen, Ida Vibeke</creatorcontrib><creatorcontrib>Lenskjold, Anders</creatorcontrib><creatorcontrib>Axelsen, Martin</creatorcontrib><creatorcontrib>Lundemann, Michael</creatorcontrib><creatorcontrib>Boesen, Mikael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brejnebøl, Mathias Willadsen</au><au>Hansen, Philip</au><au>Nybing, Janus Uhd</au><au>Bachmann, Rikke</au><au>Ratjen, Ulrik</au><au>Hansen, Ida Vibeke</au><au>Lenskjold, Anders</au><au>Axelsen, Martin</au><au>Lundemann, Michael</au><au>Boesen, Mikael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>External validation of an artificial intelligence tool for radiographic knee osteoarthritis severity classification</atitle><jtitle>European journal of radiology</jtitle><addtitle>Eur J Radiol</addtitle><date>2022-05</date><risdate>2022</risdate><volume>150</volume><spage>110249</spage><epage>110249</epage><pages>110249-110249</pages><artnum>110249</artnum><issn>0720-048X</issn><eissn>1872-7727</eissn><abstract>To externally validate an artificial intelligence (AI) tool for radiographic knee osteoarthritis severity classification on a clinical dataset. This retrospective, consecutive patient sample, external validation study used weight-bearing, non-fixed-flexion posterior-anterior knee radiographs from a clinical production PACS. The index test was ordinal Kellgren-Lawrence grading by an AI tool, two musculoskeletal radiology consultants, two reporting technologists, and two resident radiologists. Grading was repeated by all readers after at least four weeks. Reference test was the consensus of the two consultants. The primary outcome was quadratic weighted kappa. Secondary outcomes were ordinal weighted accuracy, multiclass accuracy and F1-score. 50 consecutive patients between September 24, 2019 and October 22, 2019 were retrospectively included (3 excluded) totaling 99 knees (1 excluded). Quadratic weighted kappa for the AI tool and the consultant consensus was 0.88 CI95% (0.82–0.92). Agreement between the consultants was 0.89 CI95% (0.85–0.93). Intra-rater agreements for the consultants were 0.96 CI95% (0.94–0.98) and 0.94 CI95% (0.91–0.96) respectively. For the AI tool it was 1 CI95% (1–1). For the AI tool, ordinal weighted accuracy was 97.8% CI95% (96.9–98.6 %). Average multiclass accuracy and F1-score were 84% (83/99) CI95% (77–91%) and 0.67 CI95% (0.51–0.81). The AI tool achieved the same good-to-excellent agreement with the radiology consultant consensus for radiographic knee osteoarthritis severity classification as the consultants did with each other.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>35338955</pmid><doi>10.1016/j.ejrad.2022.110249</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0720-048X
ispartof European journal of radiology, 2022-05, Vol.150, p.110249-110249, Article 110249
issn 0720-048X
1872-7727
language eng
recordid cdi_proquest_miscellaneous_2644019735
source MEDLINE; Elsevier ScienceDirect Journals
subjects Artificial Intelligence
Conventional radiography
External validation
Humans
Inter-rater agreement
Knee
Knee osteoarthritis
Osteoarthritis, Knee - diagnostic imaging
Radiography
Retrospective Studies
title External validation of an artificial intelligence tool for radiographic knee osteoarthritis severity classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A04%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=External%20validation%20of%20an%20artificial%20intelligence%20tool%20for%20radiographic%20knee%20osteoarthritis%20severity%20classification&rft.jtitle=European%20journal%20of%20radiology&rft.au=Brejneb%C3%B8l,%20Mathias%20Willadsen&rft.date=2022-05&rft.volume=150&rft.spage=110249&rft.epage=110249&rft.pages=110249-110249&rft.artnum=110249&rft.issn=0720-048X&rft.eissn=1872-7727&rft_id=info:doi/10.1016/j.ejrad.2022.110249&rft_dat=%3Cproquest_cross%3E2644019735%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2644019735&rft_id=info:pmid/35338955&rft_els_id=S0720048X22000997&rfr_iscdi=true