The reliance of glycerol utilization by Cupriavidus necator on CO2 fixation and improved glycerol catabolism

While crude glycerol is a cheap carbon source for industrial-scale cultivation of microorganisms, its application relies on fast growth and conversion. The biopolymer producing Cupriavidus necator H16 (synonym: Ralstonia eutropha H16) grows poorly on glycerol. The heterologous expression of glycerol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2022-04, Vol.106 (7), p.2541-2555
Hauptverfasser: Strittmatter, Carl Simon, Eggers, Jessica, Biesgen, Vanessa, Pauels, Inga, Becker, Florian, Steinbüchel, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2555
container_issue 7
container_start_page 2541
container_title Applied microbiology and biotechnology
container_volume 106
creator Strittmatter, Carl Simon
Eggers, Jessica
Biesgen, Vanessa
Pauels, Inga
Becker, Florian
Steinbüchel, Alexander
description While crude glycerol is a cheap carbon source for industrial-scale cultivation of microorganisms, its application relies on fast growth and conversion. The biopolymer producing Cupriavidus necator H16 (synonym: Ralstonia eutropha H16) grows poorly on glycerol. The heterologous expression of glycerol facilitator glpF , glycerol kinase glpK , and glycerol dehydrogenase glpD from E. coli accelerated the growth considerably. The naturally occurring glycerol utilization is inhibited by low glycerol kinase activity. A limited heterotrophic growth promotes the dependency on autotrophic growth by carbon dioxide (CO 2 ) fixation and refixation. As mixotrophic growth occurs in the wildtype due to low consumption rates of glycerol, CO 2 fixation by the Calvin-Benson-Bassham (CBB) cycle is essential. The deletion of both cbbX copies encoding putative RuBisCO-activases (AAA + ATPase) resulted in a sharp slowdown of growth and glycerol consumption. Activase activity is necessary for functioning carboxylation by RuBisCO. Each of the two copies compensates for the loss of the other, as suggested by observed expression levels. The strong tendency towards autotrophy supports previous investigations of glycerol growth and emphasizes the versatility of the metabolism of C. necator H16. Mixotrophy with glycerol-utilization and CO 2 fixation with a high dependence on the CBB is automatically occurring unless transportation and degradation of glycerol are optimized. Parallel engineering of CO 2 fixation and glycerol degradation is suggested towards application for value-added production from crude glycerol. Key points • Growth on glycerol is highly dependent on efficient carbon fixation via CBB cycle. • CbbX is essential for the efficiency of RuBisCO in C. necator H16. • Expression of glycerol degradation pathway enzymes accelerates glycerol utilization. Graphical abstract
doi_str_mv 10.1007/s00253-022-11842-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2644008647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647946596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-c5ab32dd0fc308297afa2bf038ce1d149125d22c20b8a7aedab0ac6c34fc06a73</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVpodtt_0BOglx6cToay7J9DEuaBBZySc5iLMuJgtbaSvaS7a-vti4s9JDTDMz3Ho95jF0IuBIA9Y8EgFVZAGIhRCOxgA9sJWSZFyXkR7YCUVdFXbXNZ_YlpVcAgY1SK-YfXyyP1jsajeVh4M_-aGwMns-T8-43TS6MvDvyzbyPjg6unxMfraEpRJ4vmwfkg3tbMBp77nb7GA62PxtllrrgXdp9ZZ8G8sl--zfX7OnnzePmrtg-3N5vrreFwQanwlTUldj3MJgSGmxrGgi7AcrGWNEL2QqsekSD0DVUk-2pAzLKlHIwoKgu1-z74puj_JptmvTOJWO9p9GGOWlUUgI0Sp7Qy__Q1zDHMac7UXUrVdWqTOFCmRhSinbQ-Rk7ikctQJ8K0EsBOheg_xagIYvKRZQyPD7beLZ-R_UH4ayKJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647946596</pqid></control><display><type>article</type><title>The reliance of glycerol utilization by Cupriavidus necator on CO2 fixation and improved glycerol catabolism</title><source>Springer Nature - Complete Springer Journals</source><creator>Strittmatter, Carl Simon ; Eggers, Jessica ; Biesgen, Vanessa ; Pauels, Inga ; Becker, Florian ; Steinbüchel, Alexander</creator><creatorcontrib>Strittmatter, Carl Simon ; Eggers, Jessica ; Biesgen, Vanessa ; Pauels, Inga ; Becker, Florian ; Steinbüchel, Alexander</creatorcontrib><description>While crude glycerol is a cheap carbon source for industrial-scale cultivation of microorganisms, its application relies on fast growth and conversion. The biopolymer producing Cupriavidus necator H16 (synonym: Ralstonia eutropha H16) grows poorly on glycerol. The heterologous expression of glycerol facilitator glpF , glycerol kinase glpK , and glycerol dehydrogenase glpD from E. coli accelerated the growth considerably. The naturally occurring glycerol utilization is inhibited by low glycerol kinase activity. A limited heterotrophic growth promotes the dependency on autotrophic growth by carbon dioxide (CO 2 ) fixation and refixation. As mixotrophic growth occurs in the wildtype due to low consumption rates of glycerol, CO 2 fixation by the Calvin-Benson-Bassham (CBB) cycle is essential. The deletion of both cbbX copies encoding putative RuBisCO-activases (AAA + ATPase) resulted in a sharp slowdown of growth and glycerol consumption. Activase activity is necessary for functioning carboxylation by RuBisCO. Each of the two copies compensates for the loss of the other, as suggested by observed expression levels. The strong tendency towards autotrophy supports previous investigations of glycerol growth and emphasizes the versatility of the metabolism of C. necator H16. Mixotrophy with glycerol-utilization and CO 2 fixation with a high dependence on the CBB is automatically occurring unless transportation and degradation of glycerol are optimized. Parallel engineering of CO 2 fixation and glycerol degradation is suggested towards application for value-added production from crude glycerol. Key points • Growth on glycerol is highly dependent on efficient carbon fixation via CBB cycle. • CbbX is essential for the efficiency of RuBisCO in C. necator H16. • Expression of glycerol degradation pathway enzymes accelerates glycerol utilization. Graphical abstract</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-022-11842-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adenosine triphosphatase ; Applied Genetics and Molecular Biotechnology ; Autotrophy ; Biodegradation ; Biomedical and Life Sciences ; Biopolymers ; Biotechnology ; Carbon cycle ; Carbon dioxide ; Carbon dioxide fixation ; Carbon fixation ; Carbon sources ; Carboxylation ; Catabolism ; Consumption ; Cupriavidus necator ; Degradation ; E coli ; Fixation ; Glycerol ; Glycerol dehydrogenase ; Glycerol kinase ; Heterotrophic growth ; Kinases ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Mixotrophy ; Ribulose-bisphosphate carboxylase ; Soil bacteria ; Utilization</subject><ispartof>Applied microbiology and biotechnology, 2022-04, Vol.106 (7), p.2541-2555</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-c5ab32dd0fc308297afa2bf038ce1d149125d22c20b8a7aedab0ac6c34fc06a73</citedby><cites>FETCH-LOGICAL-c282t-c5ab32dd0fc308297afa2bf038ce1d149125d22c20b8a7aedab0ac6c34fc06a73</cites><orcidid>0000-0001-9979-9905 ; 0000-0002-6189-834X ; 0000-0003-0387-833X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-022-11842-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-022-11842-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Strittmatter, Carl Simon</creatorcontrib><creatorcontrib>Eggers, Jessica</creatorcontrib><creatorcontrib>Biesgen, Vanessa</creatorcontrib><creatorcontrib>Pauels, Inga</creatorcontrib><creatorcontrib>Becker, Florian</creatorcontrib><creatorcontrib>Steinbüchel, Alexander</creatorcontrib><title>The reliance of glycerol utilization by Cupriavidus necator on CO2 fixation and improved glycerol catabolism</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><description>While crude glycerol is a cheap carbon source for industrial-scale cultivation of microorganisms, its application relies on fast growth and conversion. The biopolymer producing Cupriavidus necator H16 (synonym: Ralstonia eutropha H16) grows poorly on glycerol. The heterologous expression of glycerol facilitator glpF , glycerol kinase glpK , and glycerol dehydrogenase glpD from E. coli accelerated the growth considerably. The naturally occurring glycerol utilization is inhibited by low glycerol kinase activity. A limited heterotrophic growth promotes the dependency on autotrophic growth by carbon dioxide (CO 2 ) fixation and refixation. As mixotrophic growth occurs in the wildtype due to low consumption rates of glycerol, CO 2 fixation by the Calvin-Benson-Bassham (CBB) cycle is essential. The deletion of both cbbX copies encoding putative RuBisCO-activases (AAA + ATPase) resulted in a sharp slowdown of growth and glycerol consumption. Activase activity is necessary for functioning carboxylation by RuBisCO. Each of the two copies compensates for the loss of the other, as suggested by observed expression levels. The strong tendency towards autotrophy supports previous investigations of glycerol growth and emphasizes the versatility of the metabolism of C. necator H16. Mixotrophy with glycerol-utilization and CO 2 fixation with a high dependence on the CBB is automatically occurring unless transportation and degradation of glycerol are optimized. Parallel engineering of CO 2 fixation and glycerol degradation is suggested towards application for value-added production from crude glycerol. Key points • Growth on glycerol is highly dependent on efficient carbon fixation via CBB cycle. • CbbX is essential for the efficiency of RuBisCO in C. necator H16. • Expression of glycerol degradation pathway enzymes accelerates glycerol utilization. Graphical abstract</description><subject>Adenosine triphosphatase</subject><subject>Applied Genetics and Molecular Biotechnology</subject><subject>Autotrophy</subject><subject>Biodegradation</subject><subject>Biomedical and Life Sciences</subject><subject>Biopolymers</subject><subject>Biotechnology</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide fixation</subject><subject>Carbon fixation</subject><subject>Carbon sources</subject><subject>Carboxylation</subject><subject>Catabolism</subject><subject>Consumption</subject><subject>Cupriavidus necator</subject><subject>Degradation</subject><subject>E coli</subject><subject>Fixation</subject><subject>Glycerol</subject><subject>Glycerol dehydrogenase</subject><subject>Glycerol kinase</subject><subject>Heterotrophic growth</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Mixotrophy</subject><subject>Ribulose-bisphosphate carboxylase</subject><subject>Soil bacteria</subject><subject>Utilization</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFr3DAQhUVpodtt_0BOglx6cToay7J9DEuaBBZySc5iLMuJgtbaSvaS7a-vti4s9JDTDMz3Ho95jF0IuBIA9Y8EgFVZAGIhRCOxgA9sJWSZFyXkR7YCUVdFXbXNZ_YlpVcAgY1SK-YfXyyP1jsajeVh4M_-aGwMns-T8-43TS6MvDvyzbyPjg6unxMfraEpRJ4vmwfkg3tbMBp77nb7GA62PxtllrrgXdp9ZZ8G8sl--zfX7OnnzePmrtg-3N5vrreFwQanwlTUldj3MJgSGmxrGgi7AcrGWNEL2QqsekSD0DVUk-2pAzLKlHIwoKgu1-z74puj_JptmvTOJWO9p9GGOWlUUgI0Sp7Qy__Q1zDHMac7UXUrVdWqTOFCmRhSinbQ-Rk7ikctQJ8K0EsBOheg_xagIYvKRZQyPD7beLZ-R_UH4ayKJA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Strittmatter, Carl Simon</creator><creator>Eggers, Jessica</creator><creator>Biesgen, Vanessa</creator><creator>Pauels, Inga</creator><creator>Becker, Florian</creator><creator>Steinbüchel, Alexander</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9979-9905</orcidid><orcidid>https://orcid.org/0000-0002-6189-834X</orcidid><orcidid>https://orcid.org/0000-0003-0387-833X</orcidid></search><sort><creationdate>20220401</creationdate><title>The reliance of glycerol utilization by Cupriavidus necator on CO2 fixation and improved glycerol catabolism</title><author>Strittmatter, Carl Simon ; Eggers, Jessica ; Biesgen, Vanessa ; Pauels, Inga ; Becker, Florian ; Steinbüchel, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-c5ab32dd0fc308297afa2bf038ce1d149125d22c20b8a7aedab0ac6c34fc06a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenosine triphosphatase</topic><topic>Applied Genetics and Molecular Biotechnology</topic><topic>Autotrophy</topic><topic>Biodegradation</topic><topic>Biomedical and Life Sciences</topic><topic>Biopolymers</topic><topic>Biotechnology</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide fixation</topic><topic>Carbon fixation</topic><topic>Carbon sources</topic><topic>Carboxylation</topic><topic>Catabolism</topic><topic>Consumption</topic><topic>Cupriavidus necator</topic><topic>Degradation</topic><topic>E coli</topic><topic>Fixation</topic><topic>Glycerol</topic><topic>Glycerol dehydrogenase</topic><topic>Glycerol kinase</topic><topic>Heterotrophic growth</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Mixotrophy</topic><topic>Ribulose-bisphosphate carboxylase</topic><topic>Soil bacteria</topic><topic>Utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strittmatter, Carl Simon</creatorcontrib><creatorcontrib>Eggers, Jessica</creatorcontrib><creatorcontrib>Biesgen, Vanessa</creatorcontrib><creatorcontrib>Pauels, Inga</creatorcontrib><creatorcontrib>Becker, Florian</creatorcontrib><creatorcontrib>Steinbüchel, Alexander</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strittmatter, Carl Simon</au><au>Eggers, Jessica</au><au>Biesgen, Vanessa</au><au>Pauels, Inga</au><au>Becker, Florian</au><au>Steinbüchel, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The reliance of glycerol utilization by Cupriavidus necator on CO2 fixation and improved glycerol catabolism</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>106</volume><issue>7</issue><spage>2541</spage><epage>2555</epage><pages>2541-2555</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>While crude glycerol is a cheap carbon source for industrial-scale cultivation of microorganisms, its application relies on fast growth and conversion. The biopolymer producing Cupriavidus necator H16 (synonym: Ralstonia eutropha H16) grows poorly on glycerol. The heterologous expression of glycerol facilitator glpF , glycerol kinase glpK , and glycerol dehydrogenase glpD from E. coli accelerated the growth considerably. The naturally occurring glycerol utilization is inhibited by low glycerol kinase activity. A limited heterotrophic growth promotes the dependency on autotrophic growth by carbon dioxide (CO 2 ) fixation and refixation. As mixotrophic growth occurs in the wildtype due to low consumption rates of glycerol, CO 2 fixation by the Calvin-Benson-Bassham (CBB) cycle is essential. The deletion of both cbbX copies encoding putative RuBisCO-activases (AAA + ATPase) resulted in a sharp slowdown of growth and glycerol consumption. Activase activity is necessary for functioning carboxylation by RuBisCO. Each of the two copies compensates for the loss of the other, as suggested by observed expression levels. The strong tendency towards autotrophy supports previous investigations of glycerol growth and emphasizes the versatility of the metabolism of C. necator H16. Mixotrophy with glycerol-utilization and CO 2 fixation with a high dependence on the CBB is automatically occurring unless transportation and degradation of glycerol are optimized. Parallel engineering of CO 2 fixation and glycerol degradation is suggested towards application for value-added production from crude glycerol. Key points • Growth on glycerol is highly dependent on efficient carbon fixation via CBB cycle. • CbbX is essential for the efficiency of RuBisCO in C. necator H16. • Expression of glycerol degradation pathway enzymes accelerates glycerol utilization. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00253-022-11842-0</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9979-9905</orcidid><orcidid>https://orcid.org/0000-0002-6189-834X</orcidid><orcidid>https://orcid.org/0000-0003-0387-833X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2022-04, Vol.106 (7), p.2541-2555
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_2644008647
source Springer Nature - Complete Springer Journals
subjects Adenosine triphosphatase
Applied Genetics and Molecular Biotechnology
Autotrophy
Biodegradation
Biomedical and Life Sciences
Biopolymers
Biotechnology
Carbon cycle
Carbon dioxide
Carbon dioxide fixation
Carbon fixation
Carbon sources
Carboxylation
Catabolism
Consumption
Cupriavidus necator
Degradation
E coli
Fixation
Glycerol
Glycerol dehydrogenase
Glycerol kinase
Heterotrophic growth
Kinases
Life Sciences
Microbial Genetics and Genomics
Microbiology
Microorganisms
Mixotrophy
Ribulose-bisphosphate carboxylase
Soil bacteria
Utilization
title The reliance of glycerol utilization by Cupriavidus necator on CO2 fixation and improved glycerol catabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20reliance%20of%20glycerol%20utilization%20by%20Cupriavidus%20necator%20on%20CO2%20fixation%20and%20improved%20glycerol%20catabolism&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Strittmatter,%20Carl%20Simon&rft.date=2022-04-01&rft.volume=106&rft.issue=7&rft.spage=2541&rft.epage=2555&rft.pages=2541-2555&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-022-11842-0&rft_dat=%3Cproquest_cross%3E2647946596%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647946596&rft_id=info:pmid/&rfr_iscdi=true