Enhanced efficiency of enzymatic hydrolysis of wheat straw via freeze–thaw pretreatment

This research investigated enhancing the efficiency of enzymatic hydrolysis of wheat straw via freeze–thaw pretreatment and assessed the physicochemical structural changes after this pretreatment. The enzymatic hydrolysis efficiency of cellulose and hemicellulose was enhanced, and hemicellulose was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2022-08, Vol.29 (37), p.56696-56704
Hauptverfasser: Sun, Jianhong, Deng, Yuanfang, Li, Shaohua, Xu, Wenyong, Liu, Guoquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56704
container_issue 37
container_start_page 56696
container_title Environmental science and pollution research international
container_volume 29
creator Sun, Jianhong
Deng, Yuanfang
Li, Shaohua
Xu, Wenyong
Liu, Guoquan
description This research investigated enhancing the efficiency of enzymatic hydrolysis of wheat straw via freeze–thaw pretreatment and assessed the physicochemical structural changes after this pretreatment. The enzymatic hydrolysis efficiency of cellulose and hemicellulose was enhanced, and hemicellulose was more susceptible to pretreatment. The highest enzymatic hydrolysis efficiency of cellulose and hemicellulose was 57.06 and 70.66%, respectively, at − 80 ℃ for 24 h and − 10 ℃ for 24 h, respectively, which were 2.23 and 3.13-fold higher than the control levels, respectively. Scanning electron microscopy images indicated that transverse cracks appeared before longitudinal cracks with stronger pretreatment conditions, and holes were found in every sample after this pretreatment. Fourier transform infrared spectroscopy and X-ray diffraction analysis indicated that freeze–thaw pretreatment affected both the crystalline and amorphous regions and disrupted the hydrogen bonds within them. This study provides a physical pretreatment method to improve the efficiency of enzymatic hydrolysis of wheat straw.
doi_str_mv 10.1007/s11356-022-18893-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2644007059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644007059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-8720e6a2f658dc870a1b40ffe2d157a14e8d70f5b5f88b75a0b09841e84e68c93</originalsourceid><addsrcrecordid>eNp9kM1O3DAQxy0Egu3SF-gBReqll5TxV-wc0QpKJaRe4MDJcpxxN2iTLHa2UTj1HfqGPAneLh8SB04jzfzmP6MfIV8ofKcA6jRSymWRA2M51brk-bhHZrSgIleiLPfJDEohcsqFOCKfYrwDYFAydUiOuORci4LNyO15t7SdwzpD7xvXYOemrPcZdg9Ta4fGZcupDv1qik3c9scl2iGLQ7Bj9qexmQ-ID_j499-wTJ11wCEkoMVuOCYH3q4ifn6uc3JzcX69uMyvfv34uTi7yh0HOeRaMcDCMl9IXTutwNJKgPfIaiqVpQJ1rcDLSnqtKyUtVFBqQVELLLQr-Zx82-WuQ3-_wTiYtokOVyvbYb-JhhVCJFsgt-jXd-hdvwld-s4wBZTzkskiUWxHudDHGNCbdWhaGyZDwWzFm514k8Sb_-LNmJZOnqM3VYv168qL6QTwHRDTqPuN4e32B7FP0WCQCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2701339256</pqid></control><display><type>article</type><title>Enhanced efficiency of enzymatic hydrolysis of wheat straw via freeze–thaw pretreatment</title><source>SpringerNature Journals</source><creator>Sun, Jianhong ; Deng, Yuanfang ; Li, Shaohua ; Xu, Wenyong ; Liu, Guoquan</creator><creatorcontrib>Sun, Jianhong ; Deng, Yuanfang ; Li, Shaohua ; Xu, Wenyong ; Liu, Guoquan</creatorcontrib><description>This research investigated enhancing the efficiency of enzymatic hydrolysis of wheat straw via freeze–thaw pretreatment and assessed the physicochemical structural changes after this pretreatment. The enzymatic hydrolysis efficiency of cellulose and hemicellulose was enhanced, and hemicellulose was more susceptible to pretreatment. The highest enzymatic hydrolysis efficiency of cellulose and hemicellulose was 57.06 and 70.66%, respectively, at − 80 ℃ for 24 h and − 10 ℃ for 24 h, respectively, which were 2.23 and 3.13-fold higher than the control levels, respectively. Scanning electron microscopy images indicated that transverse cracks appeared before longitudinal cracks with stronger pretreatment conditions, and holes were found in every sample after this pretreatment. Fourier transform infrared spectroscopy and X-ray diffraction analysis indicated that freeze–thaw pretreatment affected both the crystalline and amorphous regions and disrupted the hydrogen bonds within them. This study provides a physical pretreatment method to improve the efficiency of enzymatic hydrolysis of wheat straw.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-022-18893-w</identifier><identifier>PMID: 35338462</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Biodegradation ; Biomass ; Cellulase ; Cellulose ; Cracks ; Earth and Environmental Science ; Ecotoxicology ; Efficiency ; Energy ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Enzymes ; Fourier analysis ; Fourier transforms ; Freeze-thawing ; Hemicellulose ; Hydrogen bonding ; Hydrogen bonds ; Hydrolysis ; Infrared analysis ; Infrared spectroscopy ; Laboratories ; Lignin ; Lignocellulose ; Pretreatment ; Research Article ; Scanning electron microscopy ; Straw ; Sugar ; Waste Water Technology ; Water Management ; Water Pollution Control ; Wheat ; Wheat straw ; X-ray diffraction</subject><ispartof>Environmental science and pollution research international, 2022-08, Vol.29 (37), p.56696-56704</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-8720e6a2f658dc870a1b40ffe2d157a14e8d70f5b5f88b75a0b09841e84e68c93</citedby><cites>FETCH-LOGICAL-c305t-8720e6a2f658dc870a1b40ffe2d157a14e8d70f5b5f88b75a0b09841e84e68c93</cites><orcidid>0000-0002-4692-8977</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-022-18893-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-022-18893-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35338462$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Jianhong</creatorcontrib><creatorcontrib>Deng, Yuanfang</creatorcontrib><creatorcontrib>Li, Shaohua</creatorcontrib><creatorcontrib>Xu, Wenyong</creatorcontrib><creatorcontrib>Liu, Guoquan</creatorcontrib><title>Enhanced efficiency of enzymatic hydrolysis of wheat straw via freeze–thaw pretreatment</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>This research investigated enhancing the efficiency of enzymatic hydrolysis of wheat straw via freeze–thaw pretreatment and assessed the physicochemical structural changes after this pretreatment. The enzymatic hydrolysis efficiency of cellulose and hemicellulose was enhanced, and hemicellulose was more susceptible to pretreatment. The highest enzymatic hydrolysis efficiency of cellulose and hemicellulose was 57.06 and 70.66%, respectively, at − 80 ℃ for 24 h and − 10 ℃ for 24 h, respectively, which were 2.23 and 3.13-fold higher than the control levels, respectively. Scanning electron microscopy images indicated that transverse cracks appeared before longitudinal cracks with stronger pretreatment conditions, and holes were found in every sample after this pretreatment. Fourier transform infrared spectroscopy and X-ray diffraction analysis indicated that freeze–thaw pretreatment affected both the crystalline and amorphous regions and disrupted the hydrogen bonds within them. This study provides a physical pretreatment method to improve the efficiency of enzymatic hydrolysis of wheat straw.</description><subject>Agriculture</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Biodegradation</subject><subject>Biomass</subject><subject>Cellulase</subject><subject>Cellulose</subject><subject>Cracks</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Efficiency</subject><subject>Energy</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Enzymes</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Freeze-thawing</subject><subject>Hemicellulose</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrolysis</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Laboratories</subject><subject>Lignin</subject><subject>Lignocellulose</subject><subject>Pretreatment</subject><subject>Research Article</subject><subject>Scanning electron microscopy</subject><subject>Straw</subject><subject>Sugar</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Wheat</subject><subject>Wheat straw</subject><subject>X-ray diffraction</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1O3DAQxy0Egu3SF-gBReqll5TxV-wc0QpKJaRe4MDJcpxxN2iTLHa2UTj1HfqGPAneLh8SB04jzfzmP6MfIV8ofKcA6jRSymWRA2M51brk-bhHZrSgIleiLPfJDEohcsqFOCKfYrwDYFAydUiOuORci4LNyO15t7SdwzpD7xvXYOemrPcZdg9Ta4fGZcupDv1qik3c9scl2iGLQ7Bj9qexmQ-ID_j499-wTJ11wCEkoMVuOCYH3q4ifn6uc3JzcX69uMyvfv34uTi7yh0HOeRaMcDCMl9IXTutwNJKgPfIaiqVpQJ1rcDLSnqtKyUtVFBqQVELLLQr-Zx82-WuQ3-_wTiYtokOVyvbYb-JhhVCJFsgt-jXd-hdvwld-s4wBZTzkskiUWxHudDHGNCbdWhaGyZDwWzFm514k8Sb_-LNmJZOnqM3VYv168qL6QTwHRDTqPuN4e32B7FP0WCQCA</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Sun, Jianhong</creator><creator>Deng, Yuanfang</creator><creator>Li, Shaohua</creator><creator>Xu, Wenyong</creator><creator>Liu, Guoquan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4692-8977</orcidid></search><sort><creationdate>20220801</creationdate><title>Enhanced efficiency of enzymatic hydrolysis of wheat straw via freeze–thaw pretreatment</title><author>Sun, Jianhong ; Deng, Yuanfang ; Li, Shaohua ; Xu, Wenyong ; Liu, Guoquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-8720e6a2f658dc870a1b40ffe2d157a14e8d70f5b5f88b75a0b09841e84e68c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Biodegradation</topic><topic>Biomass</topic><topic>Cellulase</topic><topic>Cellulose</topic><topic>Cracks</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Efficiency</topic><topic>Energy</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Enzymes</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Freeze-thawing</topic><topic>Hemicellulose</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrolysis</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Laboratories</topic><topic>Lignin</topic><topic>Lignocellulose</topic><topic>Pretreatment</topic><topic>Research Article</topic><topic>Scanning electron microscopy</topic><topic>Straw</topic><topic>Sugar</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Wheat</topic><topic>Wheat straw</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jianhong</creatorcontrib><creatorcontrib>Deng, Yuanfang</creatorcontrib><creatorcontrib>Li, Shaohua</creatorcontrib><creatorcontrib>Xu, Wenyong</creatorcontrib><creatorcontrib>Liu, Guoquan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jianhong</au><au>Deng, Yuanfang</au><au>Li, Shaohua</au><au>Xu, Wenyong</au><au>Liu, Guoquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced efficiency of enzymatic hydrolysis of wheat straw via freeze–thaw pretreatment</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>29</volume><issue>37</issue><spage>56696</spage><epage>56704</epage><pages>56696-56704</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>This research investigated enhancing the efficiency of enzymatic hydrolysis of wheat straw via freeze–thaw pretreatment and assessed the physicochemical structural changes after this pretreatment. The enzymatic hydrolysis efficiency of cellulose and hemicellulose was enhanced, and hemicellulose was more susceptible to pretreatment. The highest enzymatic hydrolysis efficiency of cellulose and hemicellulose was 57.06 and 70.66%, respectively, at − 80 ℃ for 24 h and − 10 ℃ for 24 h, respectively, which were 2.23 and 3.13-fold higher than the control levels, respectively. Scanning electron microscopy images indicated that transverse cracks appeared before longitudinal cracks with stronger pretreatment conditions, and holes were found in every sample after this pretreatment. Fourier transform infrared spectroscopy and X-ray diffraction analysis indicated that freeze–thaw pretreatment affected both the crystalline and amorphous regions and disrupted the hydrogen bonds within them. This study provides a physical pretreatment method to improve the efficiency of enzymatic hydrolysis of wheat straw.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35338462</pmid><doi>10.1007/s11356-022-18893-w</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4692-8977</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0944-1344
ispartof Environmental science and pollution research international, 2022-08, Vol.29 (37), p.56696-56704
issn 0944-1344
1614-7499
language eng
recordid cdi_proquest_miscellaneous_2644007059
source SpringerNature Journals
subjects Agriculture
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Biodegradation
Biomass
Cellulase
Cellulose
Cracks
Earth and Environmental Science
Ecotoxicology
Efficiency
Energy
Environment
Environmental Chemistry
Environmental Health
Environmental science
Enzymes
Fourier analysis
Fourier transforms
Freeze-thawing
Hemicellulose
Hydrogen bonding
Hydrogen bonds
Hydrolysis
Infrared analysis
Infrared spectroscopy
Laboratories
Lignin
Lignocellulose
Pretreatment
Research Article
Scanning electron microscopy
Straw
Sugar
Waste Water Technology
Water Management
Water Pollution Control
Wheat
Wheat straw
X-ray diffraction
title Enhanced efficiency of enzymatic hydrolysis of wheat straw via freeze–thaw pretreatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20efficiency%20of%20enzymatic%20hydrolysis%20of%20wheat%20straw%20via%20freeze%E2%80%93thaw%20pretreatment&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Sun,%20Jianhong&rft.date=2022-08-01&rft.volume=29&rft.issue=37&rft.spage=56696&rft.epage=56704&rft.pages=56696-56704&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-022-18893-w&rft_dat=%3Cproquest_cross%3E2644007059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2701339256&rft_id=info:pmid/35338462&rfr_iscdi=true