An Activatable NIR Probe for the Detection and Elimination of Senescent Cells

Cellular senescence is involved in diverse physiological processes. Accumulation of senescent cells can lead to numerous age-related diseases. Therefore, it is of great significance to develop chemical tools to effectively detect and eliminate senescent cells. Till date, a dual functional probe that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2022-04, Vol.94 (13), p.5425-5431
Hauptverfasser: Yang, Liu, Liu, Guopan, Chen, Qingxin, Wan, Yingpeng, Liu, Zhiyang, Zhang, Jie, Huang, Chen, Xu, Zhiqiang, Li, Shengliang, Lee, Chun-Sing, Zhang, Liang, Sun, Hongyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cellular senescence is involved in diverse physiological processes. Accumulation of senescent cells can lead to numerous age-related diseases. Therefore, it is of great significance to develop chemical tools to effectively detect and eliminate senescent cells. Till date, a dual functional probe that could detect and eliminate senescent cells has yet been accomplished. Herein, a β-gal-activated probe, MB-βgal, based on the methylene blue (MB) fluorophore, was designed to detect and eliminate senescent cells. In the absence of β-gal, the probe showed no fluorescence and its 1O2 production efficiency was suppressed simultaneously. On the other hand, MB-βgal could be specifically activated by the high level of β-gal in senescent cells, thus, releasing free MB with near-infrared (NIR) fluorescence and high 1O2 production efficiency under light irradiation. MB-βgal demonstrated a fast response, high sensitivity, and high selectivity in detecting β-gal in an aqueous solution and was further applied to visualization and ablation of senescent cells. As a proof of concept, the dual functions of MB-βgal were successfully demonstrated in senescent HeLa cells and mouse embryonic fibroblast cells.
ISSN:0003-2700
1520-6882
1520-6882
DOI:10.1021/acs.analchem.2c00239