Development of a Core–Shell Heterojunction TiO2/SrTiO3 Electrolyte with Improved Ionic Conductivity

Lately, semiconductor‐membrane fuel cells (SMFCs) have attained significant interest and great attention due to the deliverance of high performance at low operational temperatures,

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2022-06, Vol.23 (11), p.e202200170-n/a
Hauptverfasser: Fang, Li, Hu, Enyi, Hu, Xiaojian, Jiang, Zheng, Shah, M. A. K. Yousaf, Wang, Jun, Wang, Faze
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page e202200170
container_title Chemphyschem
container_volume 23
creator Fang, Li
Hu, Enyi
Hu, Xiaojian
Jiang, Zheng
Shah, M. A. K. Yousaf
Wang, Jun
Wang, Faze
description Lately, semiconductor‐membrane fuel cells (SMFCs) have attained significant interest and great attention due to the deliverance of high performance at low operational temperatures,
doi_str_mv 10.1002/cphc.202200170
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2642890615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2642890615</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2660-23fbaa35b42066118469fd64037b7bd36171aa9d7cab52f359fb70070c8e874d3</originalsourceid><addsrcrecordid>eNpdkM1Kw0AUhYMoWKtb1wNu3KS985OZZCmx2kKhQus6TCYTmpJk4iRpyc538A19Eqe0dOHq3AvfPZx7PO8RwwQDkKlqtmpCgBAALODKG2FGI19whq_PMyM0uPXu2nYHACEIPPL0q97r0jSVrjtkciRRbKz-_f5Zb3VZornutDW7vlZdYWq0KVZkurZOKJqVWnXWlEOn0aHotmhRNdbsdYYWpi6U86mz3p3ti264925yWbb64axj7_Nttonn_nL1vohfln5DOAef0DyVkgYpI8A5xiHjUZ5xBlSkIs0oxwJLGWVCyTQgOQ2iPBUAAlSoQ8EyOvaeT74uyVev2y6pila5R2StTd8mhDMSRsBx4NCnf-jO9LZ26RwlCKcRI9hR0Yk6FKUeksYWlbRDgiE5Vp4cK08ulSfxxzy-bPQPmDB3kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672639421</pqid></control><display><type>article</type><title>Development of a Core–Shell Heterojunction TiO2/SrTiO3 Electrolyte with Improved Ionic Conductivity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fang, Li ; Hu, Enyi ; Hu, Xiaojian ; Jiang, Zheng ; Shah, M. A. K. Yousaf ; Wang, Jun ; Wang, Faze</creator><creatorcontrib>Fang, Li ; Hu, Enyi ; Hu, Xiaojian ; Jiang, Zheng ; Shah, M. A. K. Yousaf ; Wang, Jun ; Wang, Faze</creatorcontrib><description>Lately, semiconductor‐membrane fuel cells (SMFCs) have attained significant interest and great attention due to the deliverance of high performance at low operational temperatures, &lt;550 °C. This work has synthesized the nanocomposite core‐shell heterostructure (TiO2−SrTiO3) electrolyte powder by employing the simple hydrothermal method for the SMFC. The SrTiO3 was grown in situ on the surface of TiO2 to form a core‐shell structure. A heterojunction mechanism based on the energy band structure is proposed to explain the ion transport pathway and promoted protonic conductivity. The core‐shell heterostructure (TiO2−SrTiO3) was utilized as an electrolyte to reach the peak power density of 951 mW cm−2 with an open‐circuit voltage of 1.075 V at 550 °C. The formation of core‐shell heterostructure among TiO2 and SrTiO3 causes redistribution of charges and establishes a depletion region at the interface, which confined the protons′ transport on the surface layer with accelerated ion transport and lower activation energy. The current work reveals novel insights to understand enhanced proton transport and unique methodology to develop low‐temperature ceramic fuel cells with high performance. A TiO2−SrTiO3 core‐shell nanocomposite is developed as an advanced low‐temperature fuel cell electrolyte membrane. The space charge region created at the TiO2−SrTiO3 interface confines the proton transfer through the high conductive surface with high defect density, exhibiting a peak power density of 951 mW cm−2 along with an open circuit potential of 1.075 V at 550 °C.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.202200170</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Circuits ; core-shell ; Depletion ; depletion region ; Electrolytes ; Electrolytic cells ; Energy bands ; Fuel cells ; heterojunction ; Heterojunctions ; Heterostructures ; Ion currents ; Ion transport ; Ions ; ions conductivity ; Nanocomposites ; Protons ; semiconductor membrane ; Shells (structural forms) ; Strontium titanates ; Surface layers ; Titanium dioxide</subject><ispartof>Chemphyschem, 2022-06, Vol.23 (11), p.e202200170-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5118-5266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.202200170$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.202200170$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Fang, Li</creatorcontrib><creatorcontrib>Hu, Enyi</creatorcontrib><creatorcontrib>Hu, Xiaojian</creatorcontrib><creatorcontrib>Jiang, Zheng</creatorcontrib><creatorcontrib>Shah, M. A. K. Yousaf</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Wang, Faze</creatorcontrib><title>Development of a Core–Shell Heterojunction TiO2/SrTiO3 Electrolyte with Improved Ionic Conductivity</title><title>Chemphyschem</title><description>Lately, semiconductor‐membrane fuel cells (SMFCs) have attained significant interest and great attention due to the deliverance of high performance at low operational temperatures, &lt;550 °C. This work has synthesized the nanocomposite core‐shell heterostructure (TiO2−SrTiO3) electrolyte powder by employing the simple hydrothermal method for the SMFC. The SrTiO3 was grown in situ on the surface of TiO2 to form a core‐shell structure. A heterojunction mechanism based on the energy band structure is proposed to explain the ion transport pathway and promoted protonic conductivity. The core‐shell heterostructure (TiO2−SrTiO3) was utilized as an electrolyte to reach the peak power density of 951 mW cm−2 with an open‐circuit voltage of 1.075 V at 550 °C. The formation of core‐shell heterostructure among TiO2 and SrTiO3 causes redistribution of charges and establishes a depletion region at the interface, which confined the protons′ transport on the surface layer with accelerated ion transport and lower activation energy. The current work reveals novel insights to understand enhanced proton transport and unique methodology to develop low‐temperature ceramic fuel cells with high performance. A TiO2−SrTiO3 core‐shell nanocomposite is developed as an advanced low‐temperature fuel cell electrolyte membrane. The space charge region created at the TiO2−SrTiO3 interface confines the proton transfer through the high conductive surface with high defect density, exhibiting a peak power density of 951 mW cm−2 along with an open circuit potential of 1.075 V at 550 °C.</description><subject>Circuits</subject><subject>core-shell</subject><subject>Depletion</subject><subject>depletion region</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy bands</subject><subject>Fuel cells</subject><subject>heterojunction</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Ion currents</subject><subject>Ion transport</subject><subject>Ions</subject><subject>ions conductivity</subject><subject>Nanocomposites</subject><subject>Protons</subject><subject>semiconductor membrane</subject><subject>Shells (structural forms)</subject><subject>Strontium titanates</subject><subject>Surface layers</subject><subject>Titanium dioxide</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkM1Kw0AUhYMoWKtb1wNu3KS985OZZCmx2kKhQus6TCYTmpJk4iRpyc538A19Eqe0dOHq3AvfPZx7PO8RwwQDkKlqtmpCgBAALODKG2FGI19whq_PMyM0uPXu2nYHACEIPPL0q97r0jSVrjtkciRRbKz-_f5Zb3VZornutDW7vlZdYWq0KVZkurZOKJqVWnXWlEOn0aHotmhRNdbsdYYWpi6U86mz3p3ti264925yWbb64axj7_Nttonn_nL1vohfln5DOAef0DyVkgYpI8A5xiHjUZ5xBlSkIs0oxwJLGWVCyTQgOQ2iPBUAAlSoQ8EyOvaeT74uyVev2y6pila5R2StTd8mhDMSRsBx4NCnf-jO9LZ26RwlCKcRI9hR0Yk6FKUeksYWlbRDgiE5Vp4cK08ulSfxxzy-bPQPmDB3kA</recordid><startdate>20220603</startdate><enddate>20220603</enddate><creator>Fang, Li</creator><creator>Hu, Enyi</creator><creator>Hu, Xiaojian</creator><creator>Jiang, Zheng</creator><creator>Shah, M. A. K. Yousaf</creator><creator>Wang, Jun</creator><creator>Wang, Faze</creator><general>Wiley Subscription Services, Inc</general><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5118-5266</orcidid></search><sort><creationdate>20220603</creationdate><title>Development of a Core–Shell Heterojunction TiO2/SrTiO3 Electrolyte with Improved Ionic Conductivity</title><author>Fang, Li ; Hu, Enyi ; Hu, Xiaojian ; Jiang, Zheng ; Shah, M. A. K. Yousaf ; Wang, Jun ; Wang, Faze</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2660-23fbaa35b42066118469fd64037b7bd36171aa9d7cab52f359fb70070c8e874d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circuits</topic><topic>core-shell</topic><topic>Depletion</topic><topic>depletion region</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy bands</topic><topic>Fuel cells</topic><topic>heterojunction</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Ion currents</topic><topic>Ion transport</topic><topic>Ions</topic><topic>ions conductivity</topic><topic>Nanocomposites</topic><topic>Protons</topic><topic>semiconductor membrane</topic><topic>Shells (structural forms)</topic><topic>Strontium titanates</topic><topic>Surface layers</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Li</creatorcontrib><creatorcontrib>Hu, Enyi</creatorcontrib><creatorcontrib>Hu, Xiaojian</creatorcontrib><creatorcontrib>Jiang, Zheng</creatorcontrib><creatorcontrib>Shah, M. A. K. Yousaf</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Wang, Faze</creatorcontrib><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Li</au><au>Hu, Enyi</au><au>Hu, Xiaojian</au><au>Jiang, Zheng</au><au>Shah, M. A. K. Yousaf</au><au>Wang, Jun</au><au>Wang, Faze</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Core–Shell Heterojunction TiO2/SrTiO3 Electrolyte with Improved Ionic Conductivity</atitle><jtitle>Chemphyschem</jtitle><date>2022-06-03</date><risdate>2022</risdate><volume>23</volume><issue>11</issue><spage>e202200170</spage><epage>n/a</epage><pages>e202200170-n/a</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Lately, semiconductor‐membrane fuel cells (SMFCs) have attained significant interest and great attention due to the deliverance of high performance at low operational temperatures, &lt;550 °C. This work has synthesized the nanocomposite core‐shell heterostructure (TiO2−SrTiO3) electrolyte powder by employing the simple hydrothermal method for the SMFC. The SrTiO3 was grown in situ on the surface of TiO2 to form a core‐shell structure. A heterojunction mechanism based on the energy band structure is proposed to explain the ion transport pathway and promoted protonic conductivity. The core‐shell heterostructure (TiO2−SrTiO3) was utilized as an electrolyte to reach the peak power density of 951 mW cm−2 with an open‐circuit voltage of 1.075 V at 550 °C. The formation of core‐shell heterostructure among TiO2 and SrTiO3 causes redistribution of charges and establishes a depletion region at the interface, which confined the protons′ transport on the surface layer with accelerated ion transport and lower activation energy. The current work reveals novel insights to understand enhanced proton transport and unique methodology to develop low‐temperature ceramic fuel cells with high performance. A TiO2−SrTiO3 core‐shell nanocomposite is developed as an advanced low‐temperature fuel cell electrolyte membrane. The space charge region created at the TiO2−SrTiO3 interface confines the proton transfer through the high conductive surface with high defect density, exhibiting a peak power density of 951 mW cm−2 along with an open circuit potential of 1.075 V at 550 °C.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cphc.202200170</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5118-5266</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2022-06, Vol.23 (11), p.e202200170-n/a
issn 1439-4235
1439-7641
language eng
recordid cdi_proquest_miscellaneous_2642890615
source Wiley Online Library Journals Frontfile Complete
subjects Circuits
core-shell
Depletion
depletion region
Electrolytes
Electrolytic cells
Energy bands
Fuel cells
heterojunction
Heterojunctions
Heterostructures
Ion currents
Ion transport
Ions
ions conductivity
Nanocomposites
Protons
semiconductor membrane
Shells (structural forms)
Strontium titanates
Surface layers
Titanium dioxide
title Development of a Core–Shell Heterojunction TiO2/SrTiO3 Electrolyte with Improved Ionic Conductivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A41%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Core%E2%80%93Shell%20Heterojunction%20TiO2/SrTiO3%20Electrolyte%20with%20Improved%20Ionic%20Conductivity&rft.jtitle=Chemphyschem&rft.au=Fang,%20Li&rft.date=2022-06-03&rft.volume=23&rft.issue=11&rft.spage=e202200170&rft.epage=n/a&rft.pages=e202200170-n/a&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.202200170&rft_dat=%3Cproquest_wiley%3E2642890615%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672639421&rft_id=info:pmid/&rfr_iscdi=true