Unveiling the advantages of an ultrathin N-doped carbon shell on self-supported tungsten phosphide nanowire arrays for the hydrogen evolution reaction experimentally and theoretically
Packaging electrocatalysts with carbon shells offers an opportunity to develop stable and effective hydrogen evolution reaction (HER) materials. Here, an ultrathin N-doped carbon-coated self-supported WP nanowire array (WP@NC NA) hybrid has been synthesized. Owing to the encapsulation of the ultrath...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2022-04, Vol.14 (14), p.543-5438 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5438 |
---|---|
container_issue | 14 |
container_start_page | 543 |
container_title | Nanoscale |
container_volume | 14 |
creator | Lv, Cuncai Liu, Jifeng Lou, Pingping Wang, Xiaobo Gao, Linjie Wang, Shufang Huang, Zhipeng |
description | Packaging electrocatalysts with carbon shells offers an opportunity to develop stable and effective hydrogen evolution reaction (HER) materials. Here, an ultrathin N-doped carbon-coated self-supported WP nanowire array (WP@NC NA) hybrid has been synthesized. Owing to the encapsulation of the ultrathin N-doped carbon shell on the WP surface, the as-prepared WP@NC NA hybrid exhibits enhanced physicochemical stability, more active sites, and superior conductivity compared with WP NA without carbon coating. Besides, density functional theory calculations demonstrate that the carbon shell can optimize the hydrogen adsorption step in the acidic HER, and simultaneously facilitate water physical adsorption, water dissociation, and hydroxyl group desorption steps during the alkaline HER. These findings demonstrate the intrinsic mechanism of how a carbon shell promotes the acidic and alkaline HER kinetics, and provide scientific guidance for the packaging design of promising carbon-encapsulating self-supported electrocatalysts.
An ultrathin carbon shell on self-supported WP can enhance its physicochemical stability and conductivity, as well as optimize hydrogen adsorption and facilitate water adsorption/dissociation during the HER. |
doi_str_mv | 10.1039/d2nr00423b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2642890100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647603615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-1093523f497bd38187a43c0398b7dd16a7fad8cba7a804902bd81c01a2d6458b3</originalsourceid><addsrcrecordid>eNpdkktv1DAUhS1ERUthwx5kiQ1CCvg1ibOE8milqkiIriPHvpm48tjBdgbml_H36syUQWLlI9_Px-f6GqEXlLyjhLfvDfOREMF4_widMSJIxXnDHh91LU7R05TuCKlbXvMn6JSvOGOSyzP059ZvwTrr1ziPgJXZKp_VGhIOA1Yezy5HlUfr8U1lwgQGaxX74HEawTm8CHBDleZpCjGXcp79OmXweBpDmkZrAHvlwy8bi3uMapfwEOL-snFnYlgXFLbBzdkWswhK7wX8niDaDZQwzu1KErMcCRGy1cvOM3QyKJfg-cN6jm6_fP5xcVldf_t6dfHhutKC8FxR0vIV44Nom95wSWWjBNfl0WTfGENr1QzKSN2rRkkiWsJ6I6kmVDFTi5Xs-Tl6c_CdYvg5Q8rdxiZdWlcewpw6VgsmW0IJKejr_9C7MEdf0i1UUxNe01Wh3h4oHUNKEYZuKn2quOso6ZZxdp_Yzff9OD8W-NWD5dxvwBzRv_MrwMsDEJM-Vv_9B34PCK6o4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647603615</pqid></control><display><type>article</type><title>Unveiling the advantages of an ultrathin N-doped carbon shell on self-supported tungsten phosphide nanowire arrays for the hydrogen evolution reaction experimentally and theoretically</title><source>Royal Society Of Chemistry Journals</source><creator>Lv, Cuncai ; Liu, Jifeng ; Lou, Pingping ; Wang, Xiaobo ; Gao, Linjie ; Wang, Shufang ; Huang, Zhipeng</creator><creatorcontrib>Lv, Cuncai ; Liu, Jifeng ; Lou, Pingping ; Wang, Xiaobo ; Gao, Linjie ; Wang, Shufang ; Huang, Zhipeng</creatorcontrib><description>Packaging electrocatalysts with carbon shells offers an opportunity to develop stable and effective hydrogen evolution reaction (HER) materials. Here, an ultrathin N-doped carbon-coated self-supported WP nanowire array (WP@NC NA) hybrid has been synthesized. Owing to the encapsulation of the ultrathin N-doped carbon shell on the WP surface, the as-prepared WP@NC NA hybrid exhibits enhanced physicochemical stability, more active sites, and superior conductivity compared with WP NA without carbon coating. Besides, density functional theory calculations demonstrate that the carbon shell can optimize the hydrogen adsorption step in the acidic HER, and simultaneously facilitate water physical adsorption, water dissociation, and hydroxyl group desorption steps during the alkaline HER. These findings demonstrate the intrinsic mechanism of how a carbon shell promotes the acidic and alkaline HER kinetics, and provide scientific guidance for the packaging design of promising carbon-encapsulating self-supported electrocatalysts.
An ultrathin carbon shell on self-supported WP can enhance its physicochemical stability and conductivity, as well as optimize hydrogen adsorption and facilitate water adsorption/dissociation during the HER.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d2nr00423b</identifier><identifier>PMID: 35322838</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Adsorption ; Arrays ; Carbon ; Density functional theory ; Electrocatalysts ; Encapsulation ; Hydrogen evolution reactions ; Hydroxyl groups ; Nanowires ; Packaging design ; Phosphides</subject><ispartof>Nanoscale, 2022-04, Vol.14 (14), p.543-5438</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-1093523f497bd38187a43c0398b7dd16a7fad8cba7a804902bd81c01a2d6458b3</citedby><cites>FETCH-LOGICAL-c403t-1093523f497bd38187a43c0398b7dd16a7fad8cba7a804902bd81c01a2d6458b3</cites><orcidid>0000-0001-7296-5205 ; 0000-0002-7113-2903 ; 0000-0002-5530-1308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35322838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lv, Cuncai</creatorcontrib><creatorcontrib>Liu, Jifeng</creatorcontrib><creatorcontrib>Lou, Pingping</creatorcontrib><creatorcontrib>Wang, Xiaobo</creatorcontrib><creatorcontrib>Gao, Linjie</creatorcontrib><creatorcontrib>Wang, Shufang</creatorcontrib><creatorcontrib>Huang, Zhipeng</creatorcontrib><title>Unveiling the advantages of an ultrathin N-doped carbon shell on self-supported tungsten phosphide nanowire arrays for the hydrogen evolution reaction experimentally and theoretically</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Packaging electrocatalysts with carbon shells offers an opportunity to develop stable and effective hydrogen evolution reaction (HER) materials. Here, an ultrathin N-doped carbon-coated self-supported WP nanowire array (WP@NC NA) hybrid has been synthesized. Owing to the encapsulation of the ultrathin N-doped carbon shell on the WP surface, the as-prepared WP@NC NA hybrid exhibits enhanced physicochemical stability, more active sites, and superior conductivity compared with WP NA without carbon coating. Besides, density functional theory calculations demonstrate that the carbon shell can optimize the hydrogen adsorption step in the acidic HER, and simultaneously facilitate water physical adsorption, water dissociation, and hydroxyl group desorption steps during the alkaline HER. These findings demonstrate the intrinsic mechanism of how a carbon shell promotes the acidic and alkaline HER kinetics, and provide scientific guidance for the packaging design of promising carbon-encapsulating self-supported electrocatalysts.
An ultrathin carbon shell on self-supported WP can enhance its physicochemical stability and conductivity, as well as optimize hydrogen adsorption and facilitate water adsorption/dissociation during the HER.</description><subject>Adsorption</subject><subject>Arrays</subject><subject>Carbon</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>Encapsulation</subject><subject>Hydrogen evolution reactions</subject><subject>Hydroxyl groups</subject><subject>Nanowires</subject><subject>Packaging design</subject><subject>Phosphides</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkktv1DAUhS1ERUthwx5kiQ1CCvg1ibOE8milqkiIriPHvpm48tjBdgbml_H36syUQWLlI9_Px-f6GqEXlLyjhLfvDfOREMF4_widMSJIxXnDHh91LU7R05TuCKlbXvMn6JSvOGOSyzP059ZvwTrr1ziPgJXZKp_VGhIOA1Yezy5HlUfr8U1lwgQGaxX74HEawTm8CHBDleZpCjGXcp79OmXweBpDmkZrAHvlwy8bi3uMapfwEOL-snFnYlgXFLbBzdkWswhK7wX8niDaDZQwzu1KErMcCRGy1cvOM3QyKJfg-cN6jm6_fP5xcVldf_t6dfHhutKC8FxR0vIV44Nom95wSWWjBNfl0WTfGENr1QzKSN2rRkkiWsJ6I6kmVDFTi5Xs-Tl6c_CdYvg5Q8rdxiZdWlcewpw6VgsmW0IJKejr_9C7MEdf0i1UUxNe01Wh3h4oHUNKEYZuKn2quOso6ZZxdp_Yzff9OD8W-NWD5dxvwBzRv_MrwMsDEJM-Vv_9B34PCK6o4g</recordid><startdate>20220407</startdate><enddate>20220407</enddate><creator>Lv, Cuncai</creator><creator>Liu, Jifeng</creator><creator>Lou, Pingping</creator><creator>Wang, Xiaobo</creator><creator>Gao, Linjie</creator><creator>Wang, Shufang</creator><creator>Huang, Zhipeng</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7296-5205</orcidid><orcidid>https://orcid.org/0000-0002-7113-2903</orcidid><orcidid>https://orcid.org/0000-0002-5530-1308</orcidid></search><sort><creationdate>20220407</creationdate><title>Unveiling the advantages of an ultrathin N-doped carbon shell on self-supported tungsten phosphide nanowire arrays for the hydrogen evolution reaction experimentally and theoretically</title><author>Lv, Cuncai ; Liu, Jifeng ; Lou, Pingping ; Wang, Xiaobo ; Gao, Linjie ; Wang, Shufang ; Huang, Zhipeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-1093523f497bd38187a43c0398b7dd16a7fad8cba7a804902bd81c01a2d6458b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>Arrays</topic><topic>Carbon</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>Encapsulation</topic><topic>Hydrogen evolution reactions</topic><topic>Hydroxyl groups</topic><topic>Nanowires</topic><topic>Packaging design</topic><topic>Phosphides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Cuncai</creatorcontrib><creatorcontrib>Liu, Jifeng</creatorcontrib><creatorcontrib>Lou, Pingping</creatorcontrib><creatorcontrib>Wang, Xiaobo</creatorcontrib><creatorcontrib>Gao, Linjie</creatorcontrib><creatorcontrib>Wang, Shufang</creatorcontrib><creatorcontrib>Huang, Zhipeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Cuncai</au><au>Liu, Jifeng</au><au>Lou, Pingping</au><au>Wang, Xiaobo</au><au>Gao, Linjie</au><au>Wang, Shufang</au><au>Huang, Zhipeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling the advantages of an ultrathin N-doped carbon shell on self-supported tungsten phosphide nanowire arrays for the hydrogen evolution reaction experimentally and theoretically</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2022-04-07</date><risdate>2022</risdate><volume>14</volume><issue>14</issue><spage>543</spage><epage>5438</epage><pages>543-5438</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Packaging electrocatalysts with carbon shells offers an opportunity to develop stable and effective hydrogen evolution reaction (HER) materials. Here, an ultrathin N-doped carbon-coated self-supported WP nanowire array (WP@NC NA) hybrid has been synthesized. Owing to the encapsulation of the ultrathin N-doped carbon shell on the WP surface, the as-prepared WP@NC NA hybrid exhibits enhanced physicochemical stability, more active sites, and superior conductivity compared with WP NA without carbon coating. Besides, density functional theory calculations demonstrate that the carbon shell can optimize the hydrogen adsorption step in the acidic HER, and simultaneously facilitate water physical adsorption, water dissociation, and hydroxyl group desorption steps during the alkaline HER. These findings demonstrate the intrinsic mechanism of how a carbon shell promotes the acidic and alkaline HER kinetics, and provide scientific guidance for the packaging design of promising carbon-encapsulating self-supported electrocatalysts.
An ultrathin carbon shell on self-supported WP can enhance its physicochemical stability and conductivity, as well as optimize hydrogen adsorption and facilitate water adsorption/dissociation during the HER.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35322838</pmid><doi>10.1039/d2nr00423b</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7296-5205</orcidid><orcidid>https://orcid.org/0000-0002-7113-2903</orcidid><orcidid>https://orcid.org/0000-0002-5530-1308</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2022-04, Vol.14 (14), p.543-5438 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2642890100 |
source | Royal Society Of Chemistry Journals |
subjects | Adsorption Arrays Carbon Density functional theory Electrocatalysts Encapsulation Hydrogen evolution reactions Hydroxyl groups Nanowires Packaging design Phosphides |
title | Unveiling the advantages of an ultrathin N-doped carbon shell on self-supported tungsten phosphide nanowire arrays for the hydrogen evolution reaction experimentally and theoretically |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T16%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20the%20advantages%20of%20an%20ultrathin%20N-doped%20carbon%20shell%20on%20self-supported%20tungsten%20phosphide%20nanowire%20arrays%20for%20the%20hydrogen%20evolution%20reaction%20experimentally%20and%20theoretically&rft.jtitle=Nanoscale&rft.au=Lv,%20Cuncai&rft.date=2022-04-07&rft.volume=14&rft.issue=14&rft.spage=543&rft.epage=5438&rft.pages=543-5438&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d2nr00423b&rft_dat=%3Cproquest_cross%3E2647603615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647603615&rft_id=info:pmid/35322838&rfr_iscdi=true |