Myeloperoxidase‐induced fibrinogen unfolding and clotting

Due to its unique properties and high biomedical relevance fibrinogen is a promising protein for the development of various matrixes and scaffolds for biotechnological applications. Fibrinogen molecules may form extensive clots either upon specific cleavage by thrombin or in thrombin‐free environmen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microscopy research and technique 2022-07, Vol.85 (7), p.2537-2548
Hauptverfasser: Barinov, Nikolay A., Pavlova, Elizaveta R., Tolstova, Anna P., Matveeva, Ainur G., Moskalets, Aleksandr P., Dubrovin, Evgeniy V., Klinov, Dmitry V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2548
container_issue 7
container_start_page 2537
container_title Microscopy research and technique
container_volume 85
creator Barinov, Nikolay A.
Pavlova, Elizaveta R.
Tolstova, Anna P.
Matveeva, Ainur G.
Moskalets, Aleksandr P.
Dubrovin, Evgeniy V.
Klinov, Dmitry V.
description Due to its unique properties and high biomedical relevance fibrinogen is a promising protein for the development of various matrixes and scaffolds for biotechnological applications. Fibrinogen molecules may form extensive clots either upon specific cleavage by thrombin or in thrombin‐free environment, for example, in the presence of different salts. Here, we report the novel type of non‐conventional fibrinogen clot formation, which is mediated by myeloperoxidase and takes place even at low fibrinogen concentrations (
doi_str_mv 10.1002/jemt.24107
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2641865726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2678239331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3937-47dfdda75f29c3e49dada448dd8b4692d8c31dc000c7884a6bf3f02a9caee5043</originalsourceid><addsrcrecordid>eNp90MtKw0AUBuBBFFurGx9AAm5ESJ1bMhlcSak3LG4quBsmcykpSaZmErQ7H8Fn9EmcmurChaszZ_j4OfwAHCM4RhDii6Wp2jGmCLIdMESQszj88t3NO-ExR_B5AA68X0KIUILoPhiQhKCEp3gILmdrU7qVadxboaU3n-8fRa07ZXRki7wparcwddTV1pW6qBeRrHWkSte2YTkEe1aW3hxt5wg8XU_nk9v44fHmbnL1ECvCCYsp01ZryRKLuSKGci21pDTTOstpyrHOFEFaQQgVyzIq09wSC7HkShqTQEpG4KzPXTXupTO-FVXhlSlLWRvXeYFTirI0YTgN9PQPXbquqcN1QbEMh4MICuq8V6px3jfGilVTVLJZCwTFplKxqVR8VxrwyTayyyujf-lPhwGgHrwWpVn_EyXup7N5H_oFqQKCLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678239331</pqid></control><display><type>article</type><title>Myeloperoxidase‐induced fibrinogen unfolding and clotting</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Barinov, Nikolay A. ; Pavlova, Elizaveta R. ; Tolstova, Anna P. ; Matveeva, Ainur G. ; Moskalets, Aleksandr P. ; Dubrovin, Evgeniy V. ; Klinov, Dmitry V.</creator><creatorcontrib>Barinov, Nikolay A. ; Pavlova, Elizaveta R. ; Tolstova, Anna P. ; Matveeva, Ainur G. ; Moskalets, Aleksandr P. ; Dubrovin, Evgeniy V. ; Klinov, Dmitry V.</creatorcontrib><description>Due to its unique properties and high biomedical relevance fibrinogen is a promising protein for the development of various matrixes and scaffolds for biotechnological applications. Fibrinogen molecules may form extensive clots either upon specific cleavage by thrombin or in thrombin‐free environment, for example, in the presence of different salts. Here, we report the novel type of non‐conventional fibrinogen clot formation, which is mediated by myeloperoxidase and takes place even at low fibrinogen concentrations (&lt;0.1 mg/ml). We have revealed fibrillar nature of myeloperoxidase‐mediated fibrinogen clots, which differ morphologically from fibrin clots. We have shown that fibrinogen clotting is mediated by direct interaction of myeloperoxidase molecules with the outer globular regions of fibrinogen molecules followed by fibrinogen unfolding from its natural trinodular to a fibrillar structure. We have demonstrated a major role of the Debye screening effect in regulating of myeloperoxidase‐induced fibrinogen clotting, which is facilitated by small ionic strength. While fibrinogen in an aqueous solution with myeloperoxidase undergoes changes, the enzymatic activity of myeloperoxidase is not inhibited in excess of fibrinogen. The obtained results open new insights into fibrinogen clotting, give new possibilities for the development of fibrinogen‐based functional biomaterials, and provide the novel concepts of protein unfolding. A novel type of non‐conventional fibrinogen clotting mediated by myeloperoxidase (MPO) has been characterized using atomic force microscopy and scanning electron microscopy. Fibrinogen clotting is induced by direct interaction with myeloperoxidase and depends on the Debye screening effect. The AFM images demonstrate fibrin fibers (left), fibrin and myeloperoxidase‐induced fibrinogen fibrils (middle) and myeloperoxidase‐induced fibrinogen fibrils (right).</description><identifier>ISSN: 1059-910X</identifier><identifier>EISSN: 1097-0029</identifier><identifier>DOI: 10.1002/jemt.24107</identifier><identifier>PMID: 35315962</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Aqueous solutions ; atomic force microscopy ; Biomaterials ; Biomedical materials ; Clotting ; Enzymatic activity ; Fibrin ; Fibrinogen ; fibrinogen clotting ; Fibrous structure ; Ionic strength ; Peroxidase ; protein denaturation ; Protein folding ; protein materials ; Proteins ; Salts ; scanning electron microscopy ; single‐molecule analysis ; Thrombin</subject><ispartof>Microscopy research and technique, 2022-07, Vol.85 (7), p.2537-2548</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3937-47dfdda75f29c3e49dada448dd8b4692d8c31dc000c7884a6bf3f02a9caee5043</citedby><cites>FETCH-LOGICAL-c3937-47dfdda75f29c3e49dada448dd8b4692d8c31dc000c7884a6bf3f02a9caee5043</cites><orcidid>0000-0001-8883-5966 ; 0000-0002-0512-2547 ; 0000-0001-8288-2198 ; 0000-0002-2511-7622 ; 0000-0002-7202-0268 ; 0000-0003-1414-7786 ; 0000-0003-3860-0733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjemt.24107$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjemt.24107$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35315962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barinov, Nikolay A.</creatorcontrib><creatorcontrib>Pavlova, Elizaveta R.</creatorcontrib><creatorcontrib>Tolstova, Anna P.</creatorcontrib><creatorcontrib>Matveeva, Ainur G.</creatorcontrib><creatorcontrib>Moskalets, Aleksandr P.</creatorcontrib><creatorcontrib>Dubrovin, Evgeniy V.</creatorcontrib><creatorcontrib>Klinov, Dmitry V.</creatorcontrib><title>Myeloperoxidase‐induced fibrinogen unfolding and clotting</title><title>Microscopy research and technique</title><addtitle>Microsc Res Tech</addtitle><description>Due to its unique properties and high biomedical relevance fibrinogen is a promising protein for the development of various matrixes and scaffolds for biotechnological applications. Fibrinogen molecules may form extensive clots either upon specific cleavage by thrombin or in thrombin‐free environment, for example, in the presence of different salts. Here, we report the novel type of non‐conventional fibrinogen clot formation, which is mediated by myeloperoxidase and takes place even at low fibrinogen concentrations (&lt;0.1 mg/ml). We have revealed fibrillar nature of myeloperoxidase‐mediated fibrinogen clots, which differ morphologically from fibrin clots. We have shown that fibrinogen clotting is mediated by direct interaction of myeloperoxidase molecules with the outer globular regions of fibrinogen molecules followed by fibrinogen unfolding from its natural trinodular to a fibrillar structure. We have demonstrated a major role of the Debye screening effect in regulating of myeloperoxidase‐induced fibrinogen clotting, which is facilitated by small ionic strength. While fibrinogen in an aqueous solution with myeloperoxidase undergoes changes, the enzymatic activity of myeloperoxidase is not inhibited in excess of fibrinogen. The obtained results open new insights into fibrinogen clotting, give new possibilities for the development of fibrinogen‐based functional biomaterials, and provide the novel concepts of protein unfolding. A novel type of non‐conventional fibrinogen clotting mediated by myeloperoxidase (MPO) has been characterized using atomic force microscopy and scanning electron microscopy. Fibrinogen clotting is induced by direct interaction with myeloperoxidase and depends on the Debye screening effect. The AFM images demonstrate fibrin fibers (left), fibrin and myeloperoxidase‐induced fibrinogen fibrils (middle) and myeloperoxidase‐induced fibrinogen fibrils (right).</description><subject>Aqueous solutions</subject><subject>atomic force microscopy</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Clotting</subject><subject>Enzymatic activity</subject><subject>Fibrin</subject><subject>Fibrinogen</subject><subject>fibrinogen clotting</subject><subject>Fibrous structure</subject><subject>Ionic strength</subject><subject>Peroxidase</subject><subject>protein denaturation</subject><subject>Protein folding</subject><subject>protein materials</subject><subject>Proteins</subject><subject>Salts</subject><subject>scanning electron microscopy</subject><subject>single‐molecule analysis</subject><subject>Thrombin</subject><issn>1059-910X</issn><issn>1097-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90MtKw0AUBuBBFFurGx9AAm5ESJ1bMhlcSak3LG4quBsmcykpSaZmErQ7H8Fn9EmcmurChaszZ_j4OfwAHCM4RhDii6Wp2jGmCLIdMESQszj88t3NO-ExR_B5AA68X0KIUILoPhiQhKCEp3gILmdrU7qVadxboaU3n-8fRa07ZXRki7wparcwddTV1pW6qBeRrHWkSte2YTkEe1aW3hxt5wg8XU_nk9v44fHmbnL1ECvCCYsp01ZryRKLuSKGci21pDTTOstpyrHOFEFaQQgVyzIq09wSC7HkShqTQEpG4KzPXTXupTO-FVXhlSlLWRvXeYFTirI0YTgN9PQPXbquqcN1QbEMh4MICuq8V6px3jfGilVTVLJZCwTFplKxqVR8VxrwyTayyyujf-lPhwGgHrwWpVn_EyXup7N5H_oFqQKCLw</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Barinov, Nikolay A.</creator><creator>Pavlova, Elizaveta R.</creator><creator>Tolstova, Anna P.</creator><creator>Matveeva, Ainur G.</creator><creator>Moskalets, Aleksandr P.</creator><creator>Dubrovin, Evgeniy V.</creator><creator>Klinov, Dmitry V.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8883-5966</orcidid><orcidid>https://orcid.org/0000-0002-0512-2547</orcidid><orcidid>https://orcid.org/0000-0001-8288-2198</orcidid><orcidid>https://orcid.org/0000-0002-2511-7622</orcidid><orcidid>https://orcid.org/0000-0002-7202-0268</orcidid><orcidid>https://orcid.org/0000-0003-1414-7786</orcidid><orcidid>https://orcid.org/0000-0003-3860-0733</orcidid></search><sort><creationdate>202207</creationdate><title>Myeloperoxidase‐induced fibrinogen unfolding and clotting</title><author>Barinov, Nikolay A. ; Pavlova, Elizaveta R. ; Tolstova, Anna P. ; Matveeva, Ainur G. ; Moskalets, Aleksandr P. ; Dubrovin, Evgeniy V. ; Klinov, Dmitry V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3937-47dfdda75f29c3e49dada448dd8b4692d8c31dc000c7884a6bf3f02a9caee5043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aqueous solutions</topic><topic>atomic force microscopy</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Clotting</topic><topic>Enzymatic activity</topic><topic>Fibrin</topic><topic>Fibrinogen</topic><topic>fibrinogen clotting</topic><topic>Fibrous structure</topic><topic>Ionic strength</topic><topic>Peroxidase</topic><topic>protein denaturation</topic><topic>Protein folding</topic><topic>protein materials</topic><topic>Proteins</topic><topic>Salts</topic><topic>scanning electron microscopy</topic><topic>single‐molecule analysis</topic><topic>Thrombin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barinov, Nikolay A.</creatorcontrib><creatorcontrib>Pavlova, Elizaveta R.</creatorcontrib><creatorcontrib>Tolstova, Anna P.</creatorcontrib><creatorcontrib>Matveeva, Ainur G.</creatorcontrib><creatorcontrib>Moskalets, Aleksandr P.</creatorcontrib><creatorcontrib>Dubrovin, Evgeniy V.</creatorcontrib><creatorcontrib>Klinov, Dmitry V.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy research and technique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barinov, Nikolay A.</au><au>Pavlova, Elizaveta R.</au><au>Tolstova, Anna P.</au><au>Matveeva, Ainur G.</au><au>Moskalets, Aleksandr P.</au><au>Dubrovin, Evgeniy V.</au><au>Klinov, Dmitry V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myeloperoxidase‐induced fibrinogen unfolding and clotting</atitle><jtitle>Microscopy research and technique</jtitle><addtitle>Microsc Res Tech</addtitle><date>2022-07</date><risdate>2022</risdate><volume>85</volume><issue>7</issue><spage>2537</spage><epage>2548</epage><pages>2537-2548</pages><issn>1059-910X</issn><eissn>1097-0029</eissn><abstract>Due to its unique properties and high biomedical relevance fibrinogen is a promising protein for the development of various matrixes and scaffolds for biotechnological applications. Fibrinogen molecules may form extensive clots either upon specific cleavage by thrombin or in thrombin‐free environment, for example, in the presence of different salts. Here, we report the novel type of non‐conventional fibrinogen clot formation, which is mediated by myeloperoxidase and takes place even at low fibrinogen concentrations (&lt;0.1 mg/ml). We have revealed fibrillar nature of myeloperoxidase‐mediated fibrinogen clots, which differ morphologically from fibrin clots. We have shown that fibrinogen clotting is mediated by direct interaction of myeloperoxidase molecules with the outer globular regions of fibrinogen molecules followed by fibrinogen unfolding from its natural trinodular to a fibrillar structure. We have demonstrated a major role of the Debye screening effect in regulating of myeloperoxidase‐induced fibrinogen clotting, which is facilitated by small ionic strength. While fibrinogen in an aqueous solution with myeloperoxidase undergoes changes, the enzymatic activity of myeloperoxidase is not inhibited in excess of fibrinogen. The obtained results open new insights into fibrinogen clotting, give new possibilities for the development of fibrinogen‐based functional biomaterials, and provide the novel concepts of protein unfolding. A novel type of non‐conventional fibrinogen clotting mediated by myeloperoxidase (MPO) has been characterized using atomic force microscopy and scanning electron microscopy. Fibrinogen clotting is induced by direct interaction with myeloperoxidase and depends on the Debye screening effect. The AFM images demonstrate fibrin fibers (left), fibrin and myeloperoxidase‐induced fibrinogen fibrils (middle) and myeloperoxidase‐induced fibrinogen fibrils (right).</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>35315962</pmid><doi>10.1002/jemt.24107</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8883-5966</orcidid><orcidid>https://orcid.org/0000-0002-0512-2547</orcidid><orcidid>https://orcid.org/0000-0001-8288-2198</orcidid><orcidid>https://orcid.org/0000-0002-2511-7622</orcidid><orcidid>https://orcid.org/0000-0002-7202-0268</orcidid><orcidid>https://orcid.org/0000-0003-1414-7786</orcidid><orcidid>https://orcid.org/0000-0003-3860-0733</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-910X
ispartof Microscopy research and technique, 2022-07, Vol.85 (7), p.2537-2548
issn 1059-910X
1097-0029
language eng
recordid cdi_proquest_miscellaneous_2641865726
source Wiley Online Library Journals Frontfile Complete
subjects Aqueous solutions
atomic force microscopy
Biomaterials
Biomedical materials
Clotting
Enzymatic activity
Fibrin
Fibrinogen
fibrinogen clotting
Fibrous structure
Ionic strength
Peroxidase
protein denaturation
Protein folding
protein materials
Proteins
Salts
scanning electron microscopy
single‐molecule analysis
Thrombin
title Myeloperoxidase‐induced fibrinogen unfolding and clotting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myeloperoxidase%E2%80%90induced%20fibrinogen%20unfolding%20and%20clotting&rft.jtitle=Microscopy%20research%20and%20technique&rft.au=Barinov,%20Nikolay%20A.&rft.date=2022-07&rft.volume=85&rft.issue=7&rft.spage=2537&rft.epage=2548&rft.pages=2537-2548&rft.issn=1059-910X&rft.eissn=1097-0029&rft_id=info:doi/10.1002/jemt.24107&rft_dat=%3Cproquest_cross%3E2678239331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2678239331&rft_id=info:pmid/35315962&rfr_iscdi=true