Dynamic perfect hashing: upper and lower bounds

The dynamic dictionary problem is considered: provide an algorithm for storing a dynamic set, allowing the operations insert, delete, and lookup. A dynamic perfect hashing strategy is given: a randomized algorithm for the dynamic dictionary problem that takes $O(1)$ worst-case time for lookups and $...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing 1994-08, Vol.23 (4), p.738-761
Hauptverfasser: DIETZFELBINGER, M, KARLIN, A, MEHLHORN, K, MEYER AUF DER HEIDE, F, ROHNERT, H, TARJAN, R. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 761
container_issue 4
container_start_page 738
container_title SIAM journal on computing
container_volume 23
creator DIETZFELBINGER, M
KARLIN, A
MEHLHORN, K
MEYER AUF DER HEIDE, F
ROHNERT, H
TARJAN, R. E
description The dynamic dictionary problem is considered: provide an algorithm for storing a dynamic set, allowing the operations insert, delete, and lookup. A dynamic perfect hashing strategy is given: a randomized algorithm for the dynamic dictionary problem that takes $O(1)$ worst-case time for lookups and $O(1)$ amortized expected time for insertions and deletions; it uses space proportional to the size of the set stored. Furthermore, lower bounds for the time complexity of a class of deterministic algorithms for the dictionary problem are proved. This class encompasses realistic hashing-based schemes that use linear space. Such algorithms have amortized worst-case time complexity $\Omega (\log n)$ for a sequence of n insertions and lookups; if the worst-case lookup time is restricted to $k$, then the lower bound becomes $\Omega (k \cdot n^{{1 / k}} )$.
doi_str_mv 10.1137/s0097539791194094
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26415297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26415297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-722e1c43d9d0744ea7b5fb40f6c7e5a59a9882d59187e883da2be26f115886523</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoWKs_wN0g4m5sbt5xJ_UJBRfqOmQyiZ0yzYxJB-m_d0rFRVf3cs93DpeD0CXgWwAqZxljLTnVUgNohjU7QhPAmpcSAI7RZCeXO_0UneW8whgYAzpBs4dttOvGFb1PwbtNsbR52cSvu2Lox1NhY1203c-4Vd0Q63yOToJts7_4m1P0-fT4MX8pF2_Pr_P7RemoFptSEuLBMVrrGkvGvJUVDxXDQTjpueXaaqVIzTUo6ZWitSWVJyIAcKUEJ3SKbva5feq-B583Zt1k59vWRt8N2RDBgBMtR_DqAFx1Q4rjb0aDFhwE0BGCPeRSl3PywfSpWdu0NYDNrj_zftjf6Ln-C7bZ2TYkG12T_42USsoZpb801Gz6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919651613</pqid></control><display><type>article</type><title>Dynamic perfect hashing: upper and lower bounds</title><source>SIAM Journals Online</source><creator>DIETZFELBINGER, M ; KARLIN, A ; MEHLHORN, K ; MEYER AUF DER HEIDE, F ; ROHNERT, H ; TARJAN, R. E</creator><creatorcontrib>DIETZFELBINGER, M ; KARLIN, A ; MEHLHORN, K ; MEYER AUF DER HEIDE, F ; ROHNERT, H ; TARJAN, R. E</creatorcontrib><description>The dynamic dictionary problem is considered: provide an algorithm for storing a dynamic set, allowing the operations insert, delete, and lookup. A dynamic perfect hashing strategy is given: a randomized algorithm for the dynamic dictionary problem that takes $O(1)$ worst-case time for lookups and $O(1)$ amortized expected time for insertions and deletions; it uses space proportional to the size of the set stored. Furthermore, lower bounds for the time complexity of a class of deterministic algorithms for the dictionary problem are proved. This class encompasses realistic hashing-based schemes that use linear space. Such algorithms have amortized worst-case time complexity $\Omega (\log n)$ for a sequence of n insertions and lookups; if the worst-case lookup time is restricted to $k$, then the lower bound becomes $\Omega (k \cdot n^{{1 / k}} )$.</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/s0097539791194094</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Dictionaries ; Exact sciences and technology ; Grants ; Memory organisation. Data processing ; Software ; Theoretical computing</subject><ispartof>SIAM journal on computing, 1994-08, Vol.23 (4), p.738-761</ispartof><rights>1995 INIST-CNRS</rights><rights>[Copyright] © 1994 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-722e1c43d9d0744ea7b5fb40f6c7e5a59a9882d59187e883da2be26f115886523</citedby><cites>FETCH-LOGICAL-c396t-722e1c43d9d0744ea7b5fb40f6c7e5a59a9882d59187e883da2be26f115886523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3373543$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DIETZFELBINGER, M</creatorcontrib><creatorcontrib>KARLIN, A</creatorcontrib><creatorcontrib>MEHLHORN, K</creatorcontrib><creatorcontrib>MEYER AUF DER HEIDE, F</creatorcontrib><creatorcontrib>ROHNERT, H</creatorcontrib><creatorcontrib>TARJAN, R. E</creatorcontrib><title>Dynamic perfect hashing: upper and lower bounds</title><title>SIAM journal on computing</title><description>The dynamic dictionary problem is considered: provide an algorithm for storing a dynamic set, allowing the operations insert, delete, and lookup. A dynamic perfect hashing strategy is given: a randomized algorithm for the dynamic dictionary problem that takes $O(1)$ worst-case time for lookups and $O(1)$ amortized expected time for insertions and deletions; it uses space proportional to the size of the set stored. Furthermore, lower bounds for the time complexity of a class of deterministic algorithms for the dictionary problem are proved. This class encompasses realistic hashing-based schemes that use linear space. Such algorithms have amortized worst-case time complexity $\Omega (\log n)$ for a sequence of n insertions and lookups; if the worst-case lookup time is restricted to $k$, then the lower bound becomes $\Omega (k \cdot n^{{1 / k}} )$.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Dictionaries</subject><subject>Exact sciences and technology</subject><subject>Grants</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><subject>Theoretical computing</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkEtLAzEUhYMoWKs_wN0g4m5sbt5xJ_UJBRfqOmQyiZ0yzYxJB-m_d0rFRVf3cs93DpeD0CXgWwAqZxljLTnVUgNohjU7QhPAmpcSAI7RZCeXO_0UneW8whgYAzpBs4dttOvGFb1PwbtNsbR52cSvu2Lox1NhY1203c-4Vd0Q63yOToJts7_4m1P0-fT4MX8pF2_Pr_P7RemoFptSEuLBMVrrGkvGvJUVDxXDQTjpueXaaqVIzTUo6ZWitSWVJyIAcKUEJ3SKbva5feq-B583Zt1k59vWRt8N2RDBgBMtR_DqAFx1Q4rjb0aDFhwE0BGCPeRSl3PywfSpWdu0NYDNrj_zftjf6Ln-C7bZ2TYkG12T_42USsoZpb801Gz6</recordid><startdate>19940801</startdate><enddate>19940801</enddate><creator>DIETZFELBINGER, M</creator><creator>KARLIN, A</creator><creator>MEHLHORN, K</creator><creator>MEYER AUF DER HEIDE, F</creator><creator>ROHNERT, H</creator><creator>TARJAN, R. E</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19940801</creationdate><title>Dynamic perfect hashing: upper and lower bounds</title><author>DIETZFELBINGER, M ; KARLIN, A ; MEHLHORN, K ; MEYER AUF DER HEIDE, F ; ROHNERT, H ; TARJAN, R. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-722e1c43d9d0744ea7b5fb40f6c7e5a59a9882d59187e883da2be26f115886523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Dictionaries</topic><topic>Exact sciences and technology</topic><topic>Grants</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DIETZFELBINGER, M</creatorcontrib><creatorcontrib>KARLIN, A</creatorcontrib><creatorcontrib>MEHLHORN, K</creatorcontrib><creatorcontrib>MEYER AUF DER HEIDE, F</creatorcontrib><creatorcontrib>ROHNERT, H</creatorcontrib><creatorcontrib>TARJAN, R. E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DIETZFELBINGER, M</au><au>KARLIN, A</au><au>MEHLHORN, K</au><au>MEYER AUF DER HEIDE, F</au><au>ROHNERT, H</au><au>TARJAN, R. E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic perfect hashing: upper and lower bounds</atitle><jtitle>SIAM journal on computing</jtitle><date>1994-08-01</date><risdate>1994</risdate><volume>23</volume><issue>4</issue><spage>738</spage><epage>761</epage><pages>738-761</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>The dynamic dictionary problem is considered: provide an algorithm for storing a dynamic set, allowing the operations insert, delete, and lookup. A dynamic perfect hashing strategy is given: a randomized algorithm for the dynamic dictionary problem that takes $O(1)$ worst-case time for lookups and $O(1)$ amortized expected time for insertions and deletions; it uses space proportional to the size of the set stored. Furthermore, lower bounds for the time complexity of a class of deterministic algorithms for the dictionary problem are proved. This class encompasses realistic hashing-based schemes that use linear space. Such algorithms have amortized worst-case time complexity $\Omega (\log n)$ for a sequence of n insertions and lookups; if the worst-case lookup time is restricted to $k$, then the lower bound becomes $\Omega (k \cdot n^{{1 / k}} )$.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/s0097539791194094</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-5397
ispartof SIAM journal on computing, 1994-08, Vol.23 (4), p.738-761
issn 0097-5397
1095-7111
language eng
recordid cdi_proquest_miscellaneous_26415297
source SIAM Journals Online
subjects Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Computer science
control theory
systems
Data processing. List processing. Character string processing
Dictionaries
Exact sciences and technology
Grants
Memory organisation. Data processing
Software
Theoretical computing
title Dynamic perfect hashing: upper and lower bounds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20perfect%20hashing:%20upper%20and%20lower%20bounds&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=DIETZFELBINGER,%20M&rft.date=1994-08-01&rft.volume=23&rft.issue=4&rft.spage=738&rft.epage=761&rft.pages=738-761&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/s0097539791194094&rft_dat=%3Cproquest_cross%3E26415297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919651613&rft_id=info:pmid/&rfr_iscdi=true