Enhancement of mechanical and thermal properties of Ixora coccinea L. plant root derived nanocellulose using polyethylene glycol-glutaraldehyde system

Nanocellulose fibers are widely acknowledged as a more sustainable alternative to polyimide and polyethylene terephthalate-based plastic films derived from petrochemicals. Cellulose is also utilised in packaging, tissue engineering, electronic, optical, and sensor applications, pharmaceutical applic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2022-07, Vol.298, p.134324-134324, Article 134324
Hauptverfasser: Unni, Rekha, Reshmy, R., Latha, M.S., Philip, Eapen, Sindhu, Raveendran, Binod, Parameswaran, Pandey, Ashok, Awasthi, Mukesh Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134324
container_issue
container_start_page 134324
container_title Chemosphere (Oxford)
container_volume 298
creator Unni, Rekha
Reshmy, R.
Latha, M.S.
Philip, Eapen
Sindhu, Raveendran
Binod, Parameswaran
Pandey, Ashok
Awasthi, Mukesh Kumar
description Nanocellulose fibers are widely acknowledged as a more sustainable alternative to polyimide and polyethylene terephthalate-based plastic films derived from petrochemicals. Cellulose is also utilised in packaging, tissue engineering, electronic, optical, and sensor applications, pharmaceutical applications, cosmetic applications, insulation, water filtration, and hygiene applications, as well as vascular grafts. In the present study to improve the tensile and thermal properties of cellulose nanofibers, polyethylene glycol (PEG 600) with varying concentrations was produced by solvent casting and chemically crosslinked with glutaraldehyde (GA). The effects of various PEG 600 concentrations on nanofibers and the morphology of the resulting nanofibers were investigated. The effects of GA on PEG-nanocellulose morphology, average diameter, tensile strength, elongation, and thermal characteristics were investigated. Strong (GA)-based acetal linkages are used to substitute secondary hydrogen bonds in nanocellulose films. The 1% PEG 600 plasticized nanocellulose scaffolds cross-linked with GA showed a higher tensile modulus (93 MPa) than its GA untreated nanocellulose scaffolds (69 MPa). The Young's modulus of the scaffold is increased up to 83.62 MPa. The crystallinity index values of GA-treated scaffolds were increased, and the mechanical characteristics were greatly improved, according to Fourier transform infrared (FTIR) and XRD analysis on the films. The thermogravimetric analysis (TG/DTG/DSC) of the GA treated plasticized nanocellulose scaffold showed maximum decomposition temperature (Tmax) at 360.01 °C. [Display omitted] •Nanocellulose fibers are extracted from the plant roots of Ixora coccinea L.•Fabricated with solvent casting process, plasticized with PEG 600, and glutaraldehyde crosslinked.•Tensile modulus of 1% PEG 600 plasticized nanocellulose scaffolds cross-linked with GA was greater (93 MPa).•The thermogravimetric analysis of the scaffold showed Tmax at 360.01 °C.
doi_str_mv 10.1016/j.chemosphere.2022.134324
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2641511937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653522008177</els_id><sourcerecordid>2641511937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-7fb31a381500e81e9ee802ff4d0d95d7cbb99c3bca75a6fca0bae28883dc373e3</originalsourceid><addsrcrecordid>eNqNkUGv1CAUhYnR-MbRv2Bw56YVSpmWpZk89SWTuNE1oXA7ZUKhAn2xf8TfK5N5GpeuuCTn3HNPPoTeUVJTQg8fLrWeYA5pmSBC3ZCmqSlrWdM-Qzvad6Kijeifox0hLa8OnPE79CqlCyHFzMVLdMc4Ix0TbId-3ftJeQ0z-IzDiGfQ5W-1clh5g3NJmMu8xLBAzBbSVfTwM0SFddDaelD4VOPFqeKPIWRsINpHMNgrHzQ4t7qQAK_J-jNegtsgT5sDD_jsNh1cdXZrVlE5A9NmAKctZZhfoxejcgnePL179P3T_bfjl-r09fPD8eOp0qVArrpxYFSxnnJCoKcgAHrSjGNriBHcdHoYhNBs0Krj6jBqRQYFTd_3zGjWMWB79P62txT8sULKcrbperXyENYkm0NLOaWiiPdI3KQ6hpQijHKJdlZxk5TIKxZ5kf9gkVcs8oaleN8-xazDDOav8w-HIjjeBFDKPlqIMmkLhYuxEXSWJtj_iPkNcR2pbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641511937</pqid></control><display><type>article</type><title>Enhancement of mechanical and thermal properties of Ixora coccinea L. plant root derived nanocellulose using polyethylene glycol-glutaraldehyde system</title><source>Access via ScienceDirect (Elsevier)</source><creator>Unni, Rekha ; Reshmy, R. ; Latha, M.S. ; Philip, Eapen ; Sindhu, Raveendran ; Binod, Parameswaran ; Pandey, Ashok ; Awasthi, Mukesh Kumar</creator><creatorcontrib>Unni, Rekha ; Reshmy, R. ; Latha, M.S. ; Philip, Eapen ; Sindhu, Raveendran ; Binod, Parameswaran ; Pandey, Ashok ; Awasthi, Mukesh Kumar</creatorcontrib><description>Nanocellulose fibers are widely acknowledged as a more sustainable alternative to polyimide and polyethylene terephthalate-based plastic films derived from petrochemicals. Cellulose is also utilised in packaging, tissue engineering, electronic, optical, and sensor applications, pharmaceutical applications, cosmetic applications, insulation, water filtration, and hygiene applications, as well as vascular grafts. In the present study to improve the tensile and thermal properties of cellulose nanofibers, polyethylene glycol (PEG 600) with varying concentrations was produced by solvent casting and chemically crosslinked with glutaraldehyde (GA). The effects of various PEG 600 concentrations on nanofibers and the morphology of the resulting nanofibers were investigated. The effects of GA on PEG-nanocellulose morphology, average diameter, tensile strength, elongation, and thermal characteristics were investigated. Strong (GA)-based acetal linkages are used to substitute secondary hydrogen bonds in nanocellulose films. The 1% PEG 600 plasticized nanocellulose scaffolds cross-linked with GA showed a higher tensile modulus (93 MPa) than its GA untreated nanocellulose scaffolds (69 MPa). The Young's modulus of the scaffold is increased up to 83.62 MPa. The crystallinity index values of GA-treated scaffolds were increased, and the mechanical characteristics were greatly improved, according to Fourier transform infrared (FTIR) and XRD analysis on the films. The thermogravimetric analysis (TG/DTG/DSC) of the GA treated plasticized nanocellulose scaffold showed maximum decomposition temperature (Tmax) at 360.01 °C. [Display omitted] •Nanocellulose fibers are extracted from the plant roots of Ixora coccinea L.•Fabricated with solvent casting process, plasticized with PEG 600, and glutaraldehyde crosslinked.•Tensile modulus of 1% PEG 600 plasticized nanocellulose scaffolds cross-linked with GA was greater (93 MPa).•The thermogravimetric analysis of the scaffold showed Tmax at 360.01 °C.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2022.134324</identifier><identifier>PMID: 35307393</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biopolymers ; Glutaraldehyde ; Nanocellulose ; Tensile properties ; Thermogravimetric analysis</subject><ispartof>Chemosphere (Oxford), 2022-07, Vol.298, p.134324-134324, Article 134324</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-7fb31a381500e81e9ee802ff4d0d95d7cbb99c3bca75a6fca0bae28883dc373e3</citedby><cites>FETCH-LOGICAL-c307t-7fb31a381500e81e9ee802ff4d0d95d7cbb99c3bca75a6fca0bae28883dc373e3</cites><orcidid>0000-0003-0879-184X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chemosphere.2022.134324$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35307393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Unni, Rekha</creatorcontrib><creatorcontrib>Reshmy, R.</creatorcontrib><creatorcontrib>Latha, M.S.</creatorcontrib><creatorcontrib>Philip, Eapen</creatorcontrib><creatorcontrib>Sindhu, Raveendran</creatorcontrib><creatorcontrib>Binod, Parameswaran</creatorcontrib><creatorcontrib>Pandey, Ashok</creatorcontrib><creatorcontrib>Awasthi, Mukesh Kumar</creatorcontrib><title>Enhancement of mechanical and thermal properties of Ixora coccinea L. plant root derived nanocellulose using polyethylene glycol-glutaraldehyde system</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>Nanocellulose fibers are widely acknowledged as a more sustainable alternative to polyimide and polyethylene terephthalate-based plastic films derived from petrochemicals. Cellulose is also utilised in packaging, tissue engineering, electronic, optical, and sensor applications, pharmaceutical applications, cosmetic applications, insulation, water filtration, and hygiene applications, as well as vascular grafts. In the present study to improve the tensile and thermal properties of cellulose nanofibers, polyethylene glycol (PEG 600) with varying concentrations was produced by solvent casting and chemically crosslinked with glutaraldehyde (GA). The effects of various PEG 600 concentrations on nanofibers and the morphology of the resulting nanofibers were investigated. The effects of GA on PEG-nanocellulose morphology, average diameter, tensile strength, elongation, and thermal characteristics were investigated. Strong (GA)-based acetal linkages are used to substitute secondary hydrogen bonds in nanocellulose films. The 1% PEG 600 plasticized nanocellulose scaffolds cross-linked with GA showed a higher tensile modulus (93 MPa) than its GA untreated nanocellulose scaffolds (69 MPa). The Young's modulus of the scaffold is increased up to 83.62 MPa. The crystallinity index values of GA-treated scaffolds were increased, and the mechanical characteristics were greatly improved, according to Fourier transform infrared (FTIR) and XRD analysis on the films. The thermogravimetric analysis (TG/DTG/DSC) of the GA treated plasticized nanocellulose scaffold showed maximum decomposition temperature (Tmax) at 360.01 °C. [Display omitted] •Nanocellulose fibers are extracted from the plant roots of Ixora coccinea L.•Fabricated with solvent casting process, plasticized with PEG 600, and glutaraldehyde crosslinked.•Tensile modulus of 1% PEG 600 plasticized nanocellulose scaffolds cross-linked with GA was greater (93 MPa).•The thermogravimetric analysis of the scaffold showed Tmax at 360.01 °C.</description><subject>Biopolymers</subject><subject>Glutaraldehyde</subject><subject>Nanocellulose</subject><subject>Tensile properties</subject><subject>Thermogravimetric analysis</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkUGv1CAUhYnR-MbRv2Bw56YVSpmWpZk89SWTuNE1oXA7ZUKhAn2xf8TfK5N5GpeuuCTn3HNPPoTeUVJTQg8fLrWeYA5pmSBC3ZCmqSlrWdM-Qzvad6Kijeifox0hLa8OnPE79CqlCyHFzMVLdMc4Ix0TbId-3ftJeQ0z-IzDiGfQ5W-1clh5g3NJmMu8xLBAzBbSVfTwM0SFddDaelD4VOPFqeKPIWRsINpHMNgrHzQ4t7qQAK_J-jNegtsgT5sDD_jsNh1cdXZrVlE5A9NmAKctZZhfoxejcgnePL179P3T_bfjl-r09fPD8eOp0qVArrpxYFSxnnJCoKcgAHrSjGNriBHcdHoYhNBs0Krj6jBqRQYFTd_3zGjWMWB79P62txT8sULKcrbperXyENYkm0NLOaWiiPdI3KQ6hpQijHKJdlZxk5TIKxZ5kf9gkVcs8oaleN8-xazDDOav8w-HIjjeBFDKPlqIMmkLhYuxEXSWJtj_iPkNcR2pbw</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Unni, Rekha</creator><creator>Reshmy, R.</creator><creator>Latha, M.S.</creator><creator>Philip, Eapen</creator><creator>Sindhu, Raveendran</creator><creator>Binod, Parameswaran</creator><creator>Pandey, Ashok</creator><creator>Awasthi, Mukesh Kumar</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0879-184X</orcidid></search><sort><creationdate>202207</creationdate><title>Enhancement of mechanical and thermal properties of Ixora coccinea L. plant root derived nanocellulose using polyethylene glycol-glutaraldehyde system</title><author>Unni, Rekha ; Reshmy, R. ; Latha, M.S. ; Philip, Eapen ; Sindhu, Raveendran ; Binod, Parameswaran ; Pandey, Ashok ; Awasthi, Mukesh Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-7fb31a381500e81e9ee802ff4d0d95d7cbb99c3bca75a6fca0bae28883dc373e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biopolymers</topic><topic>Glutaraldehyde</topic><topic>Nanocellulose</topic><topic>Tensile properties</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unni, Rekha</creatorcontrib><creatorcontrib>Reshmy, R.</creatorcontrib><creatorcontrib>Latha, M.S.</creatorcontrib><creatorcontrib>Philip, Eapen</creatorcontrib><creatorcontrib>Sindhu, Raveendran</creatorcontrib><creatorcontrib>Binod, Parameswaran</creatorcontrib><creatorcontrib>Pandey, Ashok</creatorcontrib><creatorcontrib>Awasthi, Mukesh Kumar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Unni, Rekha</au><au>Reshmy, R.</au><au>Latha, M.S.</au><au>Philip, Eapen</au><au>Sindhu, Raveendran</au><au>Binod, Parameswaran</au><au>Pandey, Ashok</au><au>Awasthi, Mukesh Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of mechanical and thermal properties of Ixora coccinea L. plant root derived nanocellulose using polyethylene glycol-glutaraldehyde system</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2022-07</date><risdate>2022</risdate><volume>298</volume><spage>134324</spage><epage>134324</epage><pages>134324-134324</pages><artnum>134324</artnum><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>Nanocellulose fibers are widely acknowledged as a more sustainable alternative to polyimide and polyethylene terephthalate-based plastic films derived from petrochemicals. Cellulose is also utilised in packaging, tissue engineering, electronic, optical, and sensor applications, pharmaceutical applications, cosmetic applications, insulation, water filtration, and hygiene applications, as well as vascular grafts. In the present study to improve the tensile and thermal properties of cellulose nanofibers, polyethylene glycol (PEG 600) with varying concentrations was produced by solvent casting and chemically crosslinked with glutaraldehyde (GA). The effects of various PEG 600 concentrations on nanofibers and the morphology of the resulting nanofibers were investigated. The effects of GA on PEG-nanocellulose morphology, average diameter, tensile strength, elongation, and thermal characteristics were investigated. Strong (GA)-based acetal linkages are used to substitute secondary hydrogen bonds in nanocellulose films. The 1% PEG 600 plasticized nanocellulose scaffolds cross-linked with GA showed a higher tensile modulus (93 MPa) than its GA untreated nanocellulose scaffolds (69 MPa). The Young's modulus of the scaffold is increased up to 83.62 MPa. The crystallinity index values of GA-treated scaffolds were increased, and the mechanical characteristics were greatly improved, according to Fourier transform infrared (FTIR) and XRD analysis on the films. The thermogravimetric analysis (TG/DTG/DSC) of the GA treated plasticized nanocellulose scaffold showed maximum decomposition temperature (Tmax) at 360.01 °C. [Display omitted] •Nanocellulose fibers are extracted from the plant roots of Ixora coccinea L.•Fabricated with solvent casting process, plasticized with PEG 600, and glutaraldehyde crosslinked.•Tensile modulus of 1% PEG 600 plasticized nanocellulose scaffolds cross-linked with GA was greater (93 MPa).•The thermogravimetric analysis of the scaffold showed Tmax at 360.01 °C.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35307393</pmid><doi>10.1016/j.chemosphere.2022.134324</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0879-184X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-6535
ispartof Chemosphere (Oxford), 2022-07, Vol.298, p.134324-134324, Article 134324
issn 0045-6535
1879-1298
language eng
recordid cdi_proquest_miscellaneous_2641511937
source Access via ScienceDirect (Elsevier)
subjects Biopolymers
Glutaraldehyde
Nanocellulose
Tensile properties
Thermogravimetric analysis
title Enhancement of mechanical and thermal properties of Ixora coccinea L. plant root derived nanocellulose using polyethylene glycol-glutaraldehyde system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A45%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20mechanical%20and%20thermal%20properties%20of%20Ixora%20coccinea%20L.%20plant%20root%20derived%20nanocellulose%20using%20polyethylene%20glycol-glutaraldehyde%20system&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Unni,%20Rekha&rft.date=2022-07&rft.volume=298&rft.spage=134324&rft.epage=134324&rft.pages=134324-134324&rft.artnum=134324&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2022.134324&rft_dat=%3Cproquest_cross%3E2641511937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641511937&rft_id=info:pmid/35307393&rft_els_id=S0045653522008177&rfr_iscdi=true