miRNAFinder: A comprehensive web resource for plant Pre-microRNA classification
microRNAs (miRNAs) are known as one of the small non-coding RNA molecules that control the expression of genes at the RNA level, while some operate at the DNA level. They typically range from 20 to 24 nucleotides in length and can be found in the plant and animal kingdoms as well as in some viruses....
Gespeichert in:
Veröffentlicht in: | BioSystems 2022-06, Vol.215-216, p.104662-104662, Article 104662 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104662 |
---|---|
container_issue | |
container_start_page | 104662 |
container_title | BioSystems |
container_volume | 215-216 |
creator | Lokuge, Sandali Jayasundara, Shyaman Ihalagedara, Puwasuru Kahanda, Indika Herath, Damayanthi |
description | microRNAs (miRNAs) are known as one of the small non-coding RNA molecules that control the expression of genes at the RNA level, while some operate at the DNA level. They typically range from 20 to 24 nucleotides in length and can be found in the plant and animal kingdoms as well as in some viruses. Computational approaches have overcome the limitations of the experimental methods and have performed well in identifying miRNAs. Compared to mature miRNAs, precursor miRNAs (pre-miRNAs) are long and have a hairpin loop structure with structural features. Therefore, most in-silico tools are implemented for pre-miRNA identification. This study presents a multilayer perceptron (MLP) based classifier implemented using 180 features under sequential, structural, and thermodynamic feature categories for plant pre-miRNA identification. This classifier has a 92% accuracy, a 94% specificity, and a 90% sensitivity. We have further tested this model with other small non-coding RNA types and obtained 78% accuracy. Furthermore, we introduce a novel dataset to train and test machine learning models, addressing the overlapping data issue in the positive training and testing datasets presented in PlantMiRNAPred for the classification of real and pseudo-plant pre-miRNAs. The new dataset and the classifier that can be used with any plant species are deployed on a web server freely accessible at http://mirnafinder.shyaman.me/. |
doi_str_mv | 10.1016/j.biosystems.2022.104662 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2641502506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0303264722000545</els_id><sourcerecordid>2641502506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-ff8da621e30e1fce3fd9f6aabb42c307dca579388eddf4ff9cca69bdd4af868a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWqt_QXL0sjVfm2a9VbEqiIroOWSTCaZ0NzXZKv33RurH0bkMDO87886DEKZkQgmVZ4tJG2Le5AG6PGGEsTIWUrIdNKJqyirFmdhFI8IJr5gU0wN0mPOClKoV3UcHvOZEEtGM0EMXnu5n89A7SOd4hm3sVgleoc_hHfAHtDhBjutkAfuY8Gpp-gE_Jqi6YFMsVmyXJufggzVDiP0R2vNmmeH4u4_Ry_zq-fKmunu4vr2c3VVWMDFU3itnJKPACVBvgXvXeGlM2wpmOZk6a-ppw5UC57zwvrHWyKZ1ThivpDJ8jE63e1cpvq0hD7oL2cKy5IO4zrp8TWvCaiKLVG2lJXDOCbxepdCZtNGU6C-ceqH_cOovnHqLs1hPvq-s2w7cr_GHXxFcbAVQfn0PkHS2AXoLLiSwg3Yx_H_lE7B3jZ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641502506</pqid></control><display><type>article</type><title>miRNAFinder: A comprehensive web resource for plant Pre-microRNA classification</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lokuge, Sandali ; Jayasundara, Shyaman ; Ihalagedara, Puwasuru ; Kahanda, Indika ; Herath, Damayanthi</creator><creatorcontrib>Lokuge, Sandali ; Jayasundara, Shyaman ; Ihalagedara, Puwasuru ; Kahanda, Indika ; Herath, Damayanthi</creatorcontrib><description>microRNAs (miRNAs) are known as one of the small non-coding RNA molecules that control the expression of genes at the RNA level, while some operate at the DNA level. They typically range from 20 to 24 nucleotides in length and can be found in the plant and animal kingdoms as well as in some viruses. Computational approaches have overcome the limitations of the experimental methods and have performed well in identifying miRNAs. Compared to mature miRNAs, precursor miRNAs (pre-miRNAs) are long and have a hairpin loop structure with structural features. Therefore, most in-silico tools are implemented for pre-miRNA identification. This study presents a multilayer perceptron (MLP) based classifier implemented using 180 features under sequential, structural, and thermodynamic feature categories for plant pre-miRNA identification. This classifier has a 92% accuracy, a 94% specificity, and a 90% sensitivity. We have further tested this model with other small non-coding RNA types and obtained 78% accuracy. Furthermore, we introduce a novel dataset to train and test machine learning models, addressing the overlapping data issue in the positive training and testing datasets presented in PlantMiRNAPred for the classification of real and pseudo-plant pre-miRNAs. The new dataset and the classifier that can be used with any plant species are deployed on a web server freely accessible at http://mirnafinder.shyaman.me/.</description><identifier>ISSN: 0303-2647</identifier><identifier>EISSN: 1872-8324</identifier><identifier>DOI: 10.1016/j.biosystems.2022.104662</identifier><identifier>PMID: 35306049</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Animals ; Bioinformatics ; Computational Biology - methods ; Machine Learning ; microRNA ; MicroRNAs - chemistry ; MicroRNAs - genetics ; Multilayer perceptron ; Neural networks ; Novel miRNA ; Plant ; Plants - genetics ; RNA Precursors - chemistry ; RNA Precursors - genetics</subject><ispartof>BioSystems, 2022-06, Vol.215-216, p.104662-104662, Article 104662</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright © 2022 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-ff8da621e30e1fce3fd9f6aabb42c307dca579388eddf4ff9cca69bdd4af868a3</citedby><cites>FETCH-LOGICAL-c424t-ff8da621e30e1fce3fd9f6aabb42c307dca579388eddf4ff9cca69bdd4af868a3</cites><orcidid>0000-0002-4536-6917 ; 0000-0001-5824-7610 ; 0000-0002-2044-7737 ; 0000-0003-0522-3353 ; 0000-0002-3165-4299</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biosystems.2022.104662$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35306049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lokuge, Sandali</creatorcontrib><creatorcontrib>Jayasundara, Shyaman</creatorcontrib><creatorcontrib>Ihalagedara, Puwasuru</creatorcontrib><creatorcontrib>Kahanda, Indika</creatorcontrib><creatorcontrib>Herath, Damayanthi</creatorcontrib><title>miRNAFinder: A comprehensive web resource for plant Pre-microRNA classification</title><title>BioSystems</title><addtitle>Biosystems</addtitle><description>microRNAs (miRNAs) are known as one of the small non-coding RNA molecules that control the expression of genes at the RNA level, while some operate at the DNA level. They typically range from 20 to 24 nucleotides in length and can be found in the plant and animal kingdoms as well as in some viruses. Computational approaches have overcome the limitations of the experimental methods and have performed well in identifying miRNAs. Compared to mature miRNAs, precursor miRNAs (pre-miRNAs) are long and have a hairpin loop structure with structural features. Therefore, most in-silico tools are implemented for pre-miRNA identification. This study presents a multilayer perceptron (MLP) based classifier implemented using 180 features under sequential, structural, and thermodynamic feature categories for plant pre-miRNA identification. This classifier has a 92% accuracy, a 94% specificity, and a 90% sensitivity. We have further tested this model with other small non-coding RNA types and obtained 78% accuracy. Furthermore, we introduce a novel dataset to train and test machine learning models, addressing the overlapping data issue in the positive training and testing datasets presented in PlantMiRNAPred for the classification of real and pseudo-plant pre-miRNAs. The new dataset and the classifier that can be used with any plant species are deployed on a web server freely accessible at http://mirnafinder.shyaman.me/.</description><subject>Animals</subject><subject>Bioinformatics</subject><subject>Computational Biology - methods</subject><subject>Machine Learning</subject><subject>microRNA</subject><subject>MicroRNAs - chemistry</subject><subject>MicroRNAs - genetics</subject><subject>Multilayer perceptron</subject><subject>Neural networks</subject><subject>Novel miRNA</subject><subject>Plant</subject><subject>Plants - genetics</subject><subject>RNA Precursors - chemistry</subject><subject>RNA Precursors - genetics</subject><issn>0303-2647</issn><issn>1872-8324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhoMoWqt_QXL0sjVfm2a9VbEqiIroOWSTCaZ0NzXZKv33RurH0bkMDO87886DEKZkQgmVZ4tJG2Le5AG6PGGEsTIWUrIdNKJqyirFmdhFI8IJr5gU0wN0mPOClKoV3UcHvOZEEtGM0EMXnu5n89A7SOd4hm3sVgleoc_hHfAHtDhBjutkAfuY8Gpp-gE_Jqi6YFMsVmyXJufggzVDiP0R2vNmmeH4u4_Ry_zq-fKmunu4vr2c3VVWMDFU3itnJKPACVBvgXvXeGlM2wpmOZk6a-ppw5UC57zwvrHWyKZ1ThivpDJ8jE63e1cpvq0hD7oL2cKy5IO4zrp8TWvCaiKLVG2lJXDOCbxepdCZtNGU6C-ceqH_cOovnHqLs1hPvq-s2w7cr_GHXxFcbAVQfn0PkHS2AXoLLiSwg3Yx_H_lE7B3jZ8</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Lokuge, Sandali</creator><creator>Jayasundara, Shyaman</creator><creator>Ihalagedara, Puwasuru</creator><creator>Kahanda, Indika</creator><creator>Herath, Damayanthi</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4536-6917</orcidid><orcidid>https://orcid.org/0000-0001-5824-7610</orcidid><orcidid>https://orcid.org/0000-0002-2044-7737</orcidid><orcidid>https://orcid.org/0000-0003-0522-3353</orcidid><orcidid>https://orcid.org/0000-0002-3165-4299</orcidid></search><sort><creationdate>202206</creationdate><title>miRNAFinder: A comprehensive web resource for plant Pre-microRNA classification</title><author>Lokuge, Sandali ; Jayasundara, Shyaman ; Ihalagedara, Puwasuru ; Kahanda, Indika ; Herath, Damayanthi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-ff8da621e30e1fce3fd9f6aabb42c307dca579388eddf4ff9cca69bdd4af868a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Bioinformatics</topic><topic>Computational Biology - methods</topic><topic>Machine Learning</topic><topic>microRNA</topic><topic>MicroRNAs - chemistry</topic><topic>MicroRNAs - genetics</topic><topic>Multilayer perceptron</topic><topic>Neural networks</topic><topic>Novel miRNA</topic><topic>Plant</topic><topic>Plants - genetics</topic><topic>RNA Precursors - chemistry</topic><topic>RNA Precursors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lokuge, Sandali</creatorcontrib><creatorcontrib>Jayasundara, Shyaman</creatorcontrib><creatorcontrib>Ihalagedara, Puwasuru</creatorcontrib><creatorcontrib>Kahanda, Indika</creatorcontrib><creatorcontrib>Herath, Damayanthi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>BioSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lokuge, Sandali</au><au>Jayasundara, Shyaman</au><au>Ihalagedara, Puwasuru</au><au>Kahanda, Indika</au><au>Herath, Damayanthi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>miRNAFinder: A comprehensive web resource for plant Pre-microRNA classification</atitle><jtitle>BioSystems</jtitle><addtitle>Biosystems</addtitle><date>2022-06</date><risdate>2022</risdate><volume>215-216</volume><spage>104662</spage><epage>104662</epage><pages>104662-104662</pages><artnum>104662</artnum><issn>0303-2647</issn><eissn>1872-8324</eissn><abstract>microRNAs (miRNAs) are known as one of the small non-coding RNA molecules that control the expression of genes at the RNA level, while some operate at the DNA level. They typically range from 20 to 24 nucleotides in length and can be found in the plant and animal kingdoms as well as in some viruses. Computational approaches have overcome the limitations of the experimental methods and have performed well in identifying miRNAs. Compared to mature miRNAs, precursor miRNAs (pre-miRNAs) are long and have a hairpin loop structure with structural features. Therefore, most in-silico tools are implemented for pre-miRNA identification. This study presents a multilayer perceptron (MLP) based classifier implemented using 180 features under sequential, structural, and thermodynamic feature categories for plant pre-miRNA identification. This classifier has a 92% accuracy, a 94% specificity, and a 90% sensitivity. We have further tested this model with other small non-coding RNA types and obtained 78% accuracy. Furthermore, we introduce a novel dataset to train and test machine learning models, addressing the overlapping data issue in the positive training and testing datasets presented in PlantMiRNAPred for the classification of real and pseudo-plant pre-miRNAs. The new dataset and the classifier that can be used with any plant species are deployed on a web server freely accessible at http://mirnafinder.shyaman.me/.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>35306049</pmid><doi>10.1016/j.biosystems.2022.104662</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4536-6917</orcidid><orcidid>https://orcid.org/0000-0001-5824-7610</orcidid><orcidid>https://orcid.org/0000-0002-2044-7737</orcidid><orcidid>https://orcid.org/0000-0003-0522-3353</orcidid><orcidid>https://orcid.org/0000-0002-3165-4299</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-2647 |
ispartof | BioSystems, 2022-06, Vol.215-216, p.104662-104662, Article 104662 |
issn | 0303-2647 1872-8324 |
language | eng |
recordid | cdi_proquest_miscellaneous_2641502506 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Animals Bioinformatics Computational Biology - methods Machine Learning microRNA MicroRNAs - chemistry MicroRNAs - genetics Multilayer perceptron Neural networks Novel miRNA Plant Plants - genetics RNA Precursors - chemistry RNA Precursors - genetics |
title | miRNAFinder: A comprehensive web resource for plant Pre-microRNA classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A30%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=miRNAFinder:%20A%20comprehensive%20web%20resource%20for%20plant%20Pre-microRNA%20classification&rft.jtitle=BioSystems&rft.au=Lokuge,%20Sandali&rft.date=2022-06&rft.volume=215-216&rft.spage=104662&rft.epage=104662&rft.pages=104662-104662&rft.artnum=104662&rft.issn=0303-2647&rft.eissn=1872-8324&rft_id=info:doi/10.1016/j.biosystems.2022.104662&rft_dat=%3Cproquest_cross%3E2641502506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641502506&rft_id=info:pmid/35306049&rft_els_id=S0303264722000545&rfr_iscdi=true |