Synthetic gene networks recapitulate dynamic signal decoding and differential gene expression
Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information about the signals they encounter. However, the mechanisms by which dynamic signals are decoded into appropriate gene expression patterns remain poorly understood. Here, we devise networked o...
Gespeichert in:
Veröffentlicht in: | Cell systems 2022-05, Vol.13 (5), p.353-364.e6 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 364.e6 |
---|---|
container_issue | 5 |
container_start_page | 353 |
container_title | Cell systems |
container_volume | 13 |
creator | Benzinger, Dirk Ovinnikov, Serguei Khammash, Mustafa |
description | Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information about the signals they encounter. However, the mechanisms by which dynamic signals are decoded into appropriate gene expression patterns remain poorly understood. Here, we devise networked optogenetic pathways that achieve dynamic signal processing functions that recapitulate cellular information processing. Exploiting light-responsive transcriptional regulators with differing response kinetics, we build a falling edge pulse detector and show that this circuit can be employed to demultiplex dynamically encoded signals. We combine this demultiplexer with dCas9-based gene networks to construct pulsatile signal filters and decoders. Applying information theory, we show that dynamic multiplexing significantly increases the information transmission capacity from signal to gene expression state. Finally, we use dynamic multiplexing for precise multidimensional regulation of a heterologous metabolic pathway. Our results elucidate design principles of dynamic information processing and provide original synthetic systems capable of decoding complex signals for biotechnological applications.
[Display omitted]
•A synthetic incoherent feed-forward loop (IFFL) acts as a falling edge pulse detector•IFFL-based circuits enable demultiplexing and filtering of dynamic signals•Dynamic multiplexing increases information transmission capacity•Multiplexing enables input-dynamics-based differential regulation of metabolic genes
Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information. How cells decode dynamic signals and make use of the extracted information remains poorly understood. Using a synthetic biology approach, Benzinger et al. show that simple networks based on transcription factors with different response characteristics and gene regulatory interactions enable the processing and decoding of dynamic upstream signals. |
doi_str_mv | 10.1016/j.cels.2022.02.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2641002489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405471222000825</els_id><sourcerecordid>2641002489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-9f60d04f9600e274ad6f589181590bfc18f59d6b785ae08a7bdb1270d3f090823</originalsourceid><addsrcrecordid>eNp9kE1PAyEURYnRqKn9Ay7MLN20PijzQeLGGL-SJi7UpSEMPCp1ylSgav-91KpLk5fAg3Pv4hByTGFMgVZn87HGLo4ZMDaGPMB3yCHjUI54zWD3707ZARnGOAcAykV-ZPvkYFIy0eTlkDw_rH16weR0MUOPhcf00YfXWATUaunSqlMJC7P2apGR6GZedYVB3RvnZ4XypjDOWgzok8s_3x34uQwYo-v9Edmzqos4_DkH5On66vHydjS9v7m7vJiONAdII2ErMMCtqACQ1VyZypaNoA0tBbRW08aWwlRt3ZQKoVF1a1rKajATCwIaNhmQ023vMvRvK4xJLlzMfjrlsV9FySpOARhvREbZFtWhjzGglcvgFiqsJQW5MSvncmNWbsxKyAM8h05--lftAs1f5NdjBs63QE7iu8Mgo3boNRqXRSZpevdf_xda-Ipy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641002489</pqid></control><display><type>article</type><title>Synthetic gene networks recapitulate dynamic signal decoding and differential gene expression</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Benzinger, Dirk ; Ovinnikov, Serguei ; Khammash, Mustafa</creator><creatorcontrib>Benzinger, Dirk ; Ovinnikov, Serguei ; Khammash, Mustafa</creatorcontrib><description>Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information about the signals they encounter. However, the mechanisms by which dynamic signals are decoded into appropriate gene expression patterns remain poorly understood. Here, we devise networked optogenetic pathways that achieve dynamic signal processing functions that recapitulate cellular information processing. Exploiting light-responsive transcriptional regulators with differing response kinetics, we build a falling edge pulse detector and show that this circuit can be employed to demultiplex dynamically encoded signals. We combine this demultiplexer with dCas9-based gene networks to construct pulsatile signal filters and decoders. Applying information theory, we show that dynamic multiplexing significantly increases the information transmission capacity from signal to gene expression state. Finally, we use dynamic multiplexing for precise multidimensional regulation of a heterologous metabolic pathway. Our results elucidate design principles of dynamic information processing and provide original synthetic systems capable of decoding complex signals for biotechnological applications.
[Display omitted]
•A synthetic incoherent feed-forward loop (IFFL) acts as a falling edge pulse detector•IFFL-based circuits enable demultiplexing and filtering of dynamic signals•Dynamic multiplexing increases information transmission capacity•Multiplexing enables input-dynamics-based differential regulation of metabolic genes
Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information. How cells decode dynamic signals and make use of the extracted information remains poorly understood. Using a synthetic biology approach, Benzinger et al. show that simple networks based on transcription factors with different response characteristics and gene regulatory interactions enable the processing and decoding of dynamic upstream signals.</description><identifier>ISSN: 2405-4712</identifier><identifier>EISSN: 2405-4720</identifier><identifier>DOI: 10.1016/j.cels.2022.02.004</identifier><identifier>PMID: 35298924</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>dynamic multiplexing ; Gene Expression ; gene expression regulation ; Gene Regulatory Networks - genetics ; Genes, Synthetic ; information theory ; metabolix engineering ; optogenetics ; Optogenetics - methods ; signal decoding ; Signal Transduction - genetics ; signaling dynamics ; synthetic biology ; systems biology</subject><ispartof>Cell systems, 2022-05, Vol.13 (5), p.353-364.e6</ispartof><rights>2022</rights><rights>Copyright © 2022. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-9f60d04f9600e274ad6f589181590bfc18f59d6b785ae08a7bdb1270d3f090823</citedby><cites>FETCH-LOGICAL-c400t-9f60d04f9600e274ad6f589181590bfc18f59d6b785ae08a7bdb1270d3f090823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35298924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Benzinger, Dirk</creatorcontrib><creatorcontrib>Ovinnikov, Serguei</creatorcontrib><creatorcontrib>Khammash, Mustafa</creatorcontrib><title>Synthetic gene networks recapitulate dynamic signal decoding and differential gene expression</title><title>Cell systems</title><addtitle>Cell Syst</addtitle><description>Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information about the signals they encounter. However, the mechanisms by which dynamic signals are decoded into appropriate gene expression patterns remain poorly understood. Here, we devise networked optogenetic pathways that achieve dynamic signal processing functions that recapitulate cellular information processing. Exploiting light-responsive transcriptional regulators with differing response kinetics, we build a falling edge pulse detector and show that this circuit can be employed to demultiplex dynamically encoded signals. We combine this demultiplexer with dCas9-based gene networks to construct pulsatile signal filters and decoders. Applying information theory, we show that dynamic multiplexing significantly increases the information transmission capacity from signal to gene expression state. Finally, we use dynamic multiplexing for precise multidimensional regulation of a heterologous metabolic pathway. Our results elucidate design principles of dynamic information processing and provide original synthetic systems capable of decoding complex signals for biotechnological applications.
[Display omitted]
•A synthetic incoherent feed-forward loop (IFFL) acts as a falling edge pulse detector•IFFL-based circuits enable demultiplexing and filtering of dynamic signals•Dynamic multiplexing increases information transmission capacity•Multiplexing enables input-dynamics-based differential regulation of metabolic genes
Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information. How cells decode dynamic signals and make use of the extracted information remains poorly understood. Using a synthetic biology approach, Benzinger et al. show that simple networks based on transcription factors with different response characteristics and gene regulatory interactions enable the processing and decoding of dynamic upstream signals.</description><subject>dynamic multiplexing</subject><subject>Gene Expression</subject><subject>gene expression regulation</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genes, Synthetic</subject><subject>information theory</subject><subject>metabolix engineering</subject><subject>optogenetics</subject><subject>Optogenetics - methods</subject><subject>signal decoding</subject><subject>Signal Transduction - genetics</subject><subject>signaling dynamics</subject><subject>synthetic biology</subject><subject>systems biology</subject><issn>2405-4712</issn><issn>2405-4720</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PAyEURYnRqKn9Ay7MLN20PijzQeLGGL-SJi7UpSEMPCp1ylSgav-91KpLk5fAg3Pv4hByTGFMgVZn87HGLo4ZMDaGPMB3yCHjUI54zWD3707ZARnGOAcAykV-ZPvkYFIy0eTlkDw_rH16weR0MUOPhcf00YfXWATUaunSqlMJC7P2apGR6GZedYVB3RvnZ4XypjDOWgzok8s_3x34uQwYo-v9Edmzqos4_DkH5On66vHydjS9v7m7vJiONAdII2ErMMCtqACQ1VyZypaNoA0tBbRW08aWwlRt3ZQKoVF1a1rKajATCwIaNhmQ023vMvRvK4xJLlzMfjrlsV9FySpOARhvREbZFtWhjzGglcvgFiqsJQW5MSvncmNWbsxKyAM8h05--lftAs1f5NdjBs63QE7iu8Mgo3boNRqXRSZpevdf_xda-Ipy</recordid><startdate>20220518</startdate><enddate>20220518</enddate><creator>Benzinger, Dirk</creator><creator>Ovinnikov, Serguei</creator><creator>Khammash, Mustafa</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220518</creationdate><title>Synthetic gene networks recapitulate dynamic signal decoding and differential gene expression</title><author>Benzinger, Dirk ; Ovinnikov, Serguei ; Khammash, Mustafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-9f60d04f9600e274ad6f589181590bfc18f59d6b785ae08a7bdb1270d3f090823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>dynamic multiplexing</topic><topic>Gene Expression</topic><topic>gene expression regulation</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genes, Synthetic</topic><topic>information theory</topic><topic>metabolix engineering</topic><topic>optogenetics</topic><topic>Optogenetics - methods</topic><topic>signal decoding</topic><topic>Signal Transduction - genetics</topic><topic>signaling dynamics</topic><topic>synthetic biology</topic><topic>systems biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benzinger, Dirk</creatorcontrib><creatorcontrib>Ovinnikov, Serguei</creatorcontrib><creatorcontrib>Khammash, Mustafa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benzinger, Dirk</au><au>Ovinnikov, Serguei</au><au>Khammash, Mustafa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic gene networks recapitulate dynamic signal decoding and differential gene expression</atitle><jtitle>Cell systems</jtitle><addtitle>Cell Syst</addtitle><date>2022-05-18</date><risdate>2022</risdate><volume>13</volume><issue>5</issue><spage>353</spage><epage>364.e6</epage><pages>353-364.e6</pages><issn>2405-4712</issn><eissn>2405-4720</eissn><abstract>Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information about the signals they encounter. However, the mechanisms by which dynamic signals are decoded into appropriate gene expression patterns remain poorly understood. Here, we devise networked optogenetic pathways that achieve dynamic signal processing functions that recapitulate cellular information processing. Exploiting light-responsive transcriptional regulators with differing response kinetics, we build a falling edge pulse detector and show that this circuit can be employed to demultiplex dynamically encoded signals. We combine this demultiplexer with dCas9-based gene networks to construct pulsatile signal filters and decoders. Applying information theory, we show that dynamic multiplexing significantly increases the information transmission capacity from signal to gene expression state. Finally, we use dynamic multiplexing for precise multidimensional regulation of a heterologous metabolic pathway. Our results elucidate design principles of dynamic information processing and provide original synthetic systems capable of decoding complex signals for biotechnological applications.
[Display omitted]
•A synthetic incoherent feed-forward loop (IFFL) acts as a falling edge pulse detector•IFFL-based circuits enable demultiplexing and filtering of dynamic signals•Dynamic multiplexing increases information transmission capacity•Multiplexing enables input-dynamics-based differential regulation of metabolic genes
Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information. How cells decode dynamic signals and make use of the extracted information remains poorly understood. Using a synthetic biology approach, Benzinger et al. show that simple networks based on transcription factors with different response characteristics and gene regulatory interactions enable the processing and decoding of dynamic upstream signals.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35298924</pmid><doi>10.1016/j.cels.2022.02.004</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2405-4712 |
ispartof | Cell systems, 2022-05, Vol.13 (5), p.353-364.e6 |
issn | 2405-4712 2405-4720 |
language | eng |
recordid | cdi_proquest_miscellaneous_2641002489 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | dynamic multiplexing Gene Expression gene expression regulation Gene Regulatory Networks - genetics Genes, Synthetic information theory metabolix engineering optogenetics Optogenetics - methods signal decoding Signal Transduction - genetics signaling dynamics synthetic biology systems biology |
title | Synthetic gene networks recapitulate dynamic signal decoding and differential gene expression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T13%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20gene%20networks%20recapitulate%20dynamic%20signal%20decoding%20and%20differential%20gene%20expression&rft.jtitle=Cell%20systems&rft.au=Benzinger,%20Dirk&rft.date=2022-05-18&rft.volume=13&rft.issue=5&rft.spage=353&rft.epage=364.e6&rft.pages=353-364.e6&rft.issn=2405-4712&rft.eissn=2405-4720&rft_id=info:doi/10.1016/j.cels.2022.02.004&rft_dat=%3Cproquest_cross%3E2641002489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641002489&rft_id=info:pmid/35298924&rft_els_id=S2405471222000825&rfr_iscdi=true |