Synthetic gene networks recapitulate dynamic signal decoding and differential gene expression

Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information about the signals they encounter. However, the mechanisms by which dynamic signals are decoded into appropriate gene expression patterns remain poorly understood. Here, we devise networked o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell systems 2022-05, Vol.13 (5), p.353-364.e6
Hauptverfasser: Benzinger, Dirk, Ovinnikov, Serguei, Khammash, Mustafa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 364.e6
container_issue 5
container_start_page 353
container_title Cell systems
container_volume 13
creator Benzinger, Dirk
Ovinnikov, Serguei
Khammash, Mustafa
description Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information about the signals they encounter. However, the mechanisms by which dynamic signals are decoded into appropriate gene expression patterns remain poorly understood. Here, we devise networked optogenetic pathways that achieve dynamic signal processing functions that recapitulate cellular information processing. Exploiting light-responsive transcriptional regulators with differing response kinetics, we build a falling edge pulse detector and show that this circuit can be employed to demultiplex dynamically encoded signals. We combine this demultiplexer with dCas9-based gene networks to construct pulsatile signal filters and decoders. Applying information theory, we show that dynamic multiplexing significantly increases the information transmission capacity from signal to gene expression state. Finally, we use dynamic multiplexing for precise multidimensional regulation of a heterologous metabolic pathway. Our results elucidate design principles of dynamic information processing and provide original synthetic systems capable of decoding complex signals for biotechnological applications. [Display omitted] •A synthetic incoherent feed-forward loop (IFFL) acts as a falling edge pulse detector•IFFL-based circuits enable demultiplexing and filtering of dynamic signals•Dynamic multiplexing increases information transmission capacity•Multiplexing enables input-dynamics-based differential regulation of metabolic genes Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information. How cells decode dynamic signals and make use of the extracted information remains poorly understood. Using a synthetic biology approach, Benzinger et al. show that simple networks based on transcription factors with different response characteristics and gene regulatory interactions enable the processing and decoding of dynamic upstream signals.
doi_str_mv 10.1016/j.cels.2022.02.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2641002489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405471222000825</els_id><sourcerecordid>2641002489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-9f60d04f9600e274ad6f589181590bfc18f59d6b785ae08a7bdb1270d3f090823</originalsourceid><addsrcrecordid>eNp9kE1PAyEURYnRqKn9Ay7MLN20PijzQeLGGL-SJi7UpSEMPCp1ylSgav-91KpLk5fAg3Pv4hByTGFMgVZn87HGLo4ZMDaGPMB3yCHjUI54zWD3707ZARnGOAcAykV-ZPvkYFIy0eTlkDw_rH16weR0MUOPhcf00YfXWATUaunSqlMJC7P2apGR6GZedYVB3RvnZ4XypjDOWgzok8s_3x34uQwYo-v9Edmzqos4_DkH5On66vHydjS9v7m7vJiONAdII2ErMMCtqACQ1VyZypaNoA0tBbRW08aWwlRt3ZQKoVF1a1rKajATCwIaNhmQ023vMvRvK4xJLlzMfjrlsV9FySpOARhvREbZFtWhjzGglcvgFiqsJQW5MSvncmNWbsxKyAM8h05--lftAs1f5NdjBs63QE7iu8Mgo3boNRqXRSZpevdf_xda-Ipy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641002489</pqid></control><display><type>article</type><title>Synthetic gene networks recapitulate dynamic signal decoding and differential gene expression</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Benzinger, Dirk ; Ovinnikov, Serguei ; Khammash, Mustafa</creator><creatorcontrib>Benzinger, Dirk ; Ovinnikov, Serguei ; Khammash, Mustafa</creatorcontrib><description>Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information about the signals they encounter. However, the mechanisms by which dynamic signals are decoded into appropriate gene expression patterns remain poorly understood. Here, we devise networked optogenetic pathways that achieve dynamic signal processing functions that recapitulate cellular information processing. Exploiting light-responsive transcriptional regulators with differing response kinetics, we build a falling edge pulse detector and show that this circuit can be employed to demultiplex dynamically encoded signals. We combine this demultiplexer with dCas9-based gene networks to construct pulsatile signal filters and decoders. Applying information theory, we show that dynamic multiplexing significantly increases the information transmission capacity from signal to gene expression state. Finally, we use dynamic multiplexing for precise multidimensional regulation of a heterologous metabolic pathway. Our results elucidate design principles of dynamic information processing and provide original synthetic systems capable of decoding complex signals for biotechnological applications. [Display omitted] •A synthetic incoherent feed-forward loop (IFFL) acts as a falling edge pulse detector•IFFL-based circuits enable demultiplexing and filtering of dynamic signals•Dynamic multiplexing increases information transmission capacity•Multiplexing enables input-dynamics-based differential regulation of metabolic genes Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information. How cells decode dynamic signals and make use of the extracted information remains poorly understood. Using a synthetic biology approach, Benzinger et al. show that simple networks based on transcription factors with different response characteristics and gene regulatory interactions enable the processing and decoding of dynamic upstream signals.</description><identifier>ISSN: 2405-4712</identifier><identifier>EISSN: 2405-4720</identifier><identifier>DOI: 10.1016/j.cels.2022.02.004</identifier><identifier>PMID: 35298924</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>dynamic multiplexing ; Gene Expression ; gene expression regulation ; Gene Regulatory Networks - genetics ; Genes, Synthetic ; information theory ; metabolix engineering ; optogenetics ; Optogenetics - methods ; signal decoding ; Signal Transduction - genetics ; signaling dynamics ; synthetic biology ; systems biology</subject><ispartof>Cell systems, 2022-05, Vol.13 (5), p.353-364.e6</ispartof><rights>2022</rights><rights>Copyright © 2022. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-9f60d04f9600e274ad6f589181590bfc18f59d6b785ae08a7bdb1270d3f090823</citedby><cites>FETCH-LOGICAL-c400t-9f60d04f9600e274ad6f589181590bfc18f59d6b785ae08a7bdb1270d3f090823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35298924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Benzinger, Dirk</creatorcontrib><creatorcontrib>Ovinnikov, Serguei</creatorcontrib><creatorcontrib>Khammash, Mustafa</creatorcontrib><title>Synthetic gene networks recapitulate dynamic signal decoding and differential gene expression</title><title>Cell systems</title><addtitle>Cell Syst</addtitle><description>Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information about the signals they encounter. However, the mechanisms by which dynamic signals are decoded into appropriate gene expression patterns remain poorly understood. Here, we devise networked optogenetic pathways that achieve dynamic signal processing functions that recapitulate cellular information processing. Exploiting light-responsive transcriptional regulators with differing response kinetics, we build a falling edge pulse detector and show that this circuit can be employed to demultiplex dynamically encoded signals. We combine this demultiplexer with dCas9-based gene networks to construct pulsatile signal filters and decoders. Applying information theory, we show that dynamic multiplexing significantly increases the information transmission capacity from signal to gene expression state. Finally, we use dynamic multiplexing for precise multidimensional regulation of a heterologous metabolic pathway. Our results elucidate design principles of dynamic information processing and provide original synthetic systems capable of decoding complex signals for biotechnological applications. [Display omitted] •A synthetic incoherent feed-forward loop (IFFL) acts as a falling edge pulse detector•IFFL-based circuits enable demultiplexing and filtering of dynamic signals•Dynamic multiplexing increases information transmission capacity•Multiplexing enables input-dynamics-based differential regulation of metabolic genes Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information. How cells decode dynamic signals and make use of the extracted information remains poorly understood. Using a synthetic biology approach, Benzinger et al. show that simple networks based on transcription factors with different response characteristics and gene regulatory interactions enable the processing and decoding of dynamic upstream signals.</description><subject>dynamic multiplexing</subject><subject>Gene Expression</subject><subject>gene expression regulation</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genes, Synthetic</subject><subject>information theory</subject><subject>metabolix engineering</subject><subject>optogenetics</subject><subject>Optogenetics - methods</subject><subject>signal decoding</subject><subject>Signal Transduction - genetics</subject><subject>signaling dynamics</subject><subject>synthetic biology</subject><subject>systems biology</subject><issn>2405-4712</issn><issn>2405-4720</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PAyEURYnRqKn9Ay7MLN20PijzQeLGGL-SJi7UpSEMPCp1ylSgav-91KpLk5fAg3Pv4hByTGFMgVZn87HGLo4ZMDaGPMB3yCHjUI54zWD3707ZARnGOAcAykV-ZPvkYFIy0eTlkDw_rH16weR0MUOPhcf00YfXWATUaunSqlMJC7P2apGR6GZedYVB3RvnZ4XypjDOWgzok8s_3x34uQwYo-v9Edmzqos4_DkH5On66vHydjS9v7m7vJiONAdII2ErMMCtqACQ1VyZypaNoA0tBbRW08aWwlRt3ZQKoVF1a1rKajATCwIaNhmQ023vMvRvK4xJLlzMfjrlsV9FySpOARhvREbZFtWhjzGglcvgFiqsJQW5MSvncmNWbsxKyAM8h05--lftAs1f5NdjBs63QE7iu8Mgo3boNRqXRSZpevdf_xda-Ipy</recordid><startdate>20220518</startdate><enddate>20220518</enddate><creator>Benzinger, Dirk</creator><creator>Ovinnikov, Serguei</creator><creator>Khammash, Mustafa</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220518</creationdate><title>Synthetic gene networks recapitulate dynamic signal decoding and differential gene expression</title><author>Benzinger, Dirk ; Ovinnikov, Serguei ; Khammash, Mustafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-9f60d04f9600e274ad6f589181590bfc18f59d6b785ae08a7bdb1270d3f090823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>dynamic multiplexing</topic><topic>Gene Expression</topic><topic>gene expression regulation</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genes, Synthetic</topic><topic>information theory</topic><topic>metabolix engineering</topic><topic>optogenetics</topic><topic>Optogenetics - methods</topic><topic>signal decoding</topic><topic>Signal Transduction - genetics</topic><topic>signaling dynamics</topic><topic>synthetic biology</topic><topic>systems biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benzinger, Dirk</creatorcontrib><creatorcontrib>Ovinnikov, Serguei</creatorcontrib><creatorcontrib>Khammash, Mustafa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benzinger, Dirk</au><au>Ovinnikov, Serguei</au><au>Khammash, Mustafa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic gene networks recapitulate dynamic signal decoding and differential gene expression</atitle><jtitle>Cell systems</jtitle><addtitle>Cell Syst</addtitle><date>2022-05-18</date><risdate>2022</risdate><volume>13</volume><issue>5</issue><spage>353</spage><epage>364.e6</epage><pages>353-364.e6</pages><issn>2405-4712</issn><eissn>2405-4720</eissn><abstract>Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information about the signals they encounter. However, the mechanisms by which dynamic signals are decoded into appropriate gene expression patterns remain poorly understood. Here, we devise networked optogenetic pathways that achieve dynamic signal processing functions that recapitulate cellular information processing. Exploiting light-responsive transcriptional regulators with differing response kinetics, we build a falling edge pulse detector and show that this circuit can be employed to demultiplex dynamically encoded signals. We combine this demultiplexer with dCas9-based gene networks to construct pulsatile signal filters and decoders. Applying information theory, we show that dynamic multiplexing significantly increases the information transmission capacity from signal to gene expression state. Finally, we use dynamic multiplexing for precise multidimensional regulation of a heterologous metabolic pathway. Our results elucidate design principles of dynamic information processing and provide original synthetic systems capable of decoding complex signals for biotechnological applications. [Display omitted] •A synthetic incoherent feed-forward loop (IFFL) acts as a falling edge pulse detector•IFFL-based circuits enable demultiplexing and filtering of dynamic signals•Dynamic multiplexing increases information transmission capacity•Multiplexing enables input-dynamics-based differential regulation of metabolic genes Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information. How cells decode dynamic signals and make use of the extracted information remains poorly understood. Using a synthetic biology approach, Benzinger et al. show that simple networks based on transcription factors with different response characteristics and gene regulatory interactions enable the processing and decoding of dynamic upstream signals.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35298924</pmid><doi>10.1016/j.cels.2022.02.004</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2405-4712
ispartof Cell systems, 2022-05, Vol.13 (5), p.353-364.e6
issn 2405-4712
2405-4720
language eng
recordid cdi_proquest_miscellaneous_2641002489
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects dynamic multiplexing
Gene Expression
gene expression regulation
Gene Regulatory Networks - genetics
Genes, Synthetic
information theory
metabolix engineering
optogenetics
Optogenetics - methods
signal decoding
Signal Transduction - genetics
signaling dynamics
synthetic biology
systems biology
title Synthetic gene networks recapitulate dynamic signal decoding and differential gene expression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T13%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20gene%20networks%20recapitulate%20dynamic%20signal%20decoding%20and%20differential%20gene%20expression&rft.jtitle=Cell%20systems&rft.au=Benzinger,%20Dirk&rft.date=2022-05-18&rft.volume=13&rft.issue=5&rft.spage=353&rft.epage=364.e6&rft.pages=353-364.e6&rft.issn=2405-4712&rft.eissn=2405-4720&rft_id=info:doi/10.1016/j.cels.2022.02.004&rft_dat=%3Cproquest_cross%3E2641002489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641002489&rft_id=info:pmid/35298924&rft_els_id=S2405471222000825&rfr_iscdi=true