Constructing Cu−C Bonds in a Graphdiyne‐Regulated Cu Single‐Atom Electrocatalyst for CO2 Reduction to CH4

Regulating intermediates through elaborate catalyst design to control the reaction direction is crucial for promoting the selectivity of electrocatalytic CO2‐to‐CH4. M−C (M=metal) bonds are particularly important for tuning the multi‐electron reaction; however, its construction in nanomaterials is c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2022-06, Vol.61 (23), p.e202203569-n/a
Hauptverfasser: Shi, Guodong, Xie, Yunlong, Du, Lili, Fu, Xinliang, Chen, Xiaojie, Xie, Wangjing, Lu, Tong‐Bu, Yuan, Mingjian, Wang, Mei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page e202203569
container_title Angewandte Chemie International Edition
container_volume 61
creator Shi, Guodong
Xie, Yunlong
Du, Lili
Fu, Xinliang
Chen, Xiaojie
Xie, Wangjing
Lu, Tong‐Bu
Yuan, Mingjian
Wang, Mei
description Regulating intermediates through elaborate catalyst design to control the reaction direction is crucial for promoting the selectivity of electrocatalytic CO2‐to‐CH4. M−C (M=metal) bonds are particularly important for tuning the multi‐electron reaction; however, its construction in nanomaterials is challenging. Here, via rational design of in situ anchoring of Cu SAs (single atoms) on the unique platform graphdiyne, we firstly realize the construction of a chemical bond Cu−C (GDY). In situ Raman spectroelectrochemistry and DFT calculations confirm that due to the fabrication of the Cu−C bond, during CO2 reduction, the formation of *OCHO intermediates is dominant rather than *COOH on Cu atoms, facilitating the formation of CH4. Therefore, we find that constructing the Cu−C bond in Cu SAs/GDY can supply an efficient charge transfer channel, but most importantly control the reaction intermediates and guide a more facile reaction pathway to CH4, thereby significantly boosting its catalytic performance. This work provides new insights on enhancing the selectivity for CO2RR at the atomic level. The interfacial chemical Cu−C bond is successfully constructed through in situ anchoring Cu SAs (single atoms) on the unique platform graphdiyne. Experimental results and theoretical calculations demonstrate that due to the existence of the Cu−C bond, the formation of *OCHO intermediates dominates and promotes the production of CH4.
doi_str_mv 10.1002/anie.202203569
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2640998628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671203431</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2669-beaf3edaf8eb690b99f7a64c2f871ac46f90a1b6960dca863dbe2d66ec0e908e3</originalsourceid><addsrcrecordid>eNpdkDtPwzAQgCMEEqWwMltiYUnxI3XssUSlrVRRqcAcOcmlpErtEjtC2RgZET-xvwRHRQxM9_rudPqC4JrgEcGY3ildwYhiSjEbc3kSDMiYkpDFMTv1ecRYGIsxOQ8urN16XgjMB4FJjLauaXNX6Q1K2sPnd4LujS4sqjRSaNao_WtRdRoOH19r2LS1clB4ED35hbrvTpzZoWkNuWtMrpyqO-tQaRqUrChaQ9HfNho5g5J5dBmclaq2cPUbh8HLw_Q5mYfL1WyRTJbhnnIuwwxUyaBQpYCMS5xJWcaKRzktRUxUHvFSYkX8iOMiV4KzIgNacA45BokFsGFwe7y7b8xbC9alu8rmUNdKg2ltSnmEpRScCo_e_EO3pm20_85TMfE6I0Y8JY_Ue1VDl-6baqeaLiU47eWnvfz0T346eVxM_yr2A63Jfes</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671203431</pqid></control><display><type>article</type><title>Constructing Cu−C Bonds in a Graphdiyne‐Regulated Cu Single‐Atom Electrocatalyst for CO2 Reduction to CH4</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shi, Guodong ; Xie, Yunlong ; Du, Lili ; Fu, Xinliang ; Chen, Xiaojie ; Xie, Wangjing ; Lu, Tong‐Bu ; Yuan, Mingjian ; Wang, Mei</creator><creatorcontrib>Shi, Guodong ; Xie, Yunlong ; Du, Lili ; Fu, Xinliang ; Chen, Xiaojie ; Xie, Wangjing ; Lu, Tong‐Bu ; Yuan, Mingjian ; Wang, Mei</creatorcontrib><description>Regulating intermediates through elaborate catalyst design to control the reaction direction is crucial for promoting the selectivity of electrocatalytic CO2‐to‐CH4. M−C (M=metal) bonds are particularly important for tuning the multi‐electron reaction; however, its construction in nanomaterials is challenging. Here, via rational design of in situ anchoring of Cu SAs (single atoms) on the unique platform graphdiyne, we firstly realize the construction of a chemical bond Cu−C (GDY). In situ Raman spectroelectrochemistry and DFT calculations confirm that due to the fabrication of the Cu−C bond, during CO2 reduction, the formation of *OCHO intermediates is dominant rather than *COOH on Cu atoms, facilitating the formation of CH4. Therefore, we find that constructing the Cu−C bond in Cu SAs/GDY can supply an efficient charge transfer channel, but most importantly control the reaction intermediates and guide a more facile reaction pathway to CH4, thereby significantly boosting its catalytic performance. This work provides new insights on enhancing the selectivity for CO2RR at the atomic level. The interfacial chemical Cu−C bond is successfully constructed through in situ anchoring Cu SAs (single atoms) on the unique platform graphdiyne. Experimental results and theoretical calculations demonstrate that due to the existence of the Cu−C bond, the formation of *OCHO intermediates dominates and promotes the production of CH4.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202203569</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Catalysts ; Charge transfer ; Chemical bonds ; CO2 Reduction ; Coordination Cu−C Bond ; Copper ; Cu Single Atom ; Electrocatalysts ; Fabrication ; Graphdiyne ; Intermediates ; Methane ; Nanomaterials ; Nanotechnology ; Selectivity</subject><ispartof>Angewandte Chemie International Edition, 2022-06, Vol.61 (23), p.e202203569-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2790-9172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202203569$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202203569$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Shi, Guodong</creatorcontrib><creatorcontrib>Xie, Yunlong</creatorcontrib><creatorcontrib>Du, Lili</creatorcontrib><creatorcontrib>Fu, Xinliang</creatorcontrib><creatorcontrib>Chen, Xiaojie</creatorcontrib><creatorcontrib>Xie, Wangjing</creatorcontrib><creatorcontrib>Lu, Tong‐Bu</creatorcontrib><creatorcontrib>Yuan, Mingjian</creatorcontrib><creatorcontrib>Wang, Mei</creatorcontrib><title>Constructing Cu−C Bonds in a Graphdiyne‐Regulated Cu Single‐Atom Electrocatalyst for CO2 Reduction to CH4</title><title>Angewandte Chemie International Edition</title><description>Regulating intermediates through elaborate catalyst design to control the reaction direction is crucial for promoting the selectivity of electrocatalytic CO2‐to‐CH4. M−C (M=metal) bonds are particularly important for tuning the multi‐electron reaction; however, its construction in nanomaterials is challenging. Here, via rational design of in situ anchoring of Cu SAs (single atoms) on the unique platform graphdiyne, we firstly realize the construction of a chemical bond Cu−C (GDY). In situ Raman spectroelectrochemistry and DFT calculations confirm that due to the fabrication of the Cu−C bond, during CO2 reduction, the formation of *OCHO intermediates is dominant rather than *COOH on Cu atoms, facilitating the formation of CH4. Therefore, we find that constructing the Cu−C bond in Cu SAs/GDY can supply an efficient charge transfer channel, but most importantly control the reaction intermediates and guide a more facile reaction pathway to CH4, thereby significantly boosting its catalytic performance. This work provides new insights on enhancing the selectivity for CO2RR at the atomic level. The interfacial chemical Cu−C bond is successfully constructed through in situ anchoring Cu SAs (single atoms) on the unique platform graphdiyne. Experimental results and theoretical calculations demonstrate that due to the existence of the Cu−C bond, the formation of *OCHO intermediates dominates and promotes the production of CH4.</description><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chemical bonds</subject><subject>CO2 Reduction</subject><subject>Coordination Cu−C Bond</subject><subject>Copper</subject><subject>Cu Single Atom</subject><subject>Electrocatalysts</subject><subject>Fabrication</subject><subject>Graphdiyne</subject><subject>Intermediates</subject><subject>Methane</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Selectivity</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAQgCMEEqWwMltiYUnxI3XssUSlrVRRqcAcOcmlpErtEjtC2RgZET-xvwRHRQxM9_rudPqC4JrgEcGY3ildwYhiSjEbc3kSDMiYkpDFMTv1ecRYGIsxOQ8urN16XgjMB4FJjLauaXNX6Q1K2sPnd4LujS4sqjRSaNao_WtRdRoOH19r2LS1clB4ED35hbrvTpzZoWkNuWtMrpyqO-tQaRqUrChaQ9HfNho5g5J5dBmclaq2cPUbh8HLw_Q5mYfL1WyRTJbhnnIuwwxUyaBQpYCMS5xJWcaKRzktRUxUHvFSYkX8iOMiV4KzIgNacA45BokFsGFwe7y7b8xbC9alu8rmUNdKg2ltSnmEpRScCo_e_EO3pm20_85TMfE6I0Y8JY_Ue1VDl-6baqeaLiU47eWnvfz0T346eVxM_yr2A63Jfes</recordid><startdate>20220607</startdate><enddate>20220607</enddate><creator>Shi, Guodong</creator><creator>Xie, Yunlong</creator><creator>Du, Lili</creator><creator>Fu, Xinliang</creator><creator>Chen, Xiaojie</creator><creator>Xie, Wangjing</creator><creator>Lu, Tong‐Bu</creator><creator>Yuan, Mingjian</creator><creator>Wang, Mei</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2790-9172</orcidid></search><sort><creationdate>20220607</creationdate><title>Constructing Cu−C Bonds in a Graphdiyne‐Regulated Cu Single‐Atom Electrocatalyst for CO2 Reduction to CH4</title><author>Shi, Guodong ; Xie, Yunlong ; Du, Lili ; Fu, Xinliang ; Chen, Xiaojie ; Xie, Wangjing ; Lu, Tong‐Bu ; Yuan, Mingjian ; Wang, Mei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2669-beaf3edaf8eb690b99f7a64c2f871ac46f90a1b6960dca863dbe2d66ec0e908e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chemical bonds</topic><topic>CO2 Reduction</topic><topic>Coordination Cu−C Bond</topic><topic>Copper</topic><topic>Cu Single Atom</topic><topic>Electrocatalysts</topic><topic>Fabrication</topic><topic>Graphdiyne</topic><topic>Intermediates</topic><topic>Methane</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Selectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Guodong</creatorcontrib><creatorcontrib>Xie, Yunlong</creatorcontrib><creatorcontrib>Du, Lili</creatorcontrib><creatorcontrib>Fu, Xinliang</creatorcontrib><creatorcontrib>Chen, Xiaojie</creatorcontrib><creatorcontrib>Xie, Wangjing</creatorcontrib><creatorcontrib>Lu, Tong‐Bu</creatorcontrib><creatorcontrib>Yuan, Mingjian</creatorcontrib><creatorcontrib>Wang, Mei</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Guodong</au><au>Xie, Yunlong</au><au>Du, Lili</au><au>Fu, Xinliang</au><au>Chen, Xiaojie</au><au>Xie, Wangjing</au><au>Lu, Tong‐Bu</au><au>Yuan, Mingjian</au><au>Wang, Mei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing Cu−C Bonds in a Graphdiyne‐Regulated Cu Single‐Atom Electrocatalyst for CO2 Reduction to CH4</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2022-06-07</date><risdate>2022</risdate><volume>61</volume><issue>23</issue><spage>e202203569</spage><epage>n/a</epage><pages>e202203569-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Regulating intermediates through elaborate catalyst design to control the reaction direction is crucial for promoting the selectivity of electrocatalytic CO2‐to‐CH4. M−C (M=metal) bonds are particularly important for tuning the multi‐electron reaction; however, its construction in nanomaterials is challenging. Here, via rational design of in situ anchoring of Cu SAs (single atoms) on the unique platform graphdiyne, we firstly realize the construction of a chemical bond Cu−C (GDY). In situ Raman spectroelectrochemistry and DFT calculations confirm that due to the fabrication of the Cu−C bond, during CO2 reduction, the formation of *OCHO intermediates is dominant rather than *COOH on Cu atoms, facilitating the formation of CH4. Therefore, we find that constructing the Cu−C bond in Cu SAs/GDY can supply an efficient charge transfer channel, but most importantly control the reaction intermediates and guide a more facile reaction pathway to CH4, thereby significantly boosting its catalytic performance. This work provides new insights on enhancing the selectivity for CO2RR at the atomic level. The interfacial chemical Cu−C bond is successfully constructed through in situ anchoring Cu SAs (single atoms) on the unique platform graphdiyne. Experimental results and theoretical calculations demonstrate that due to the existence of the Cu−C bond, the formation of *OCHO intermediates dominates and promotes the production of CH4.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202203569</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-2790-9172</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2022-06, Vol.61 (23), p.e202203569-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2640998628
source Wiley Online Library Journals Frontfile Complete
subjects Carbon dioxide
Catalysts
Charge transfer
Chemical bonds
CO2 Reduction
Coordination Cu−C Bond
Copper
Cu Single Atom
Electrocatalysts
Fabrication
Graphdiyne
Intermediates
Methane
Nanomaterials
Nanotechnology
Selectivity
title Constructing Cu−C Bonds in a Graphdiyne‐Regulated Cu Single‐Atom Electrocatalyst for CO2 Reduction to CH4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20Cu%E2%88%92C%20Bonds%20in%20a%20Graphdiyne%E2%80%90Regulated%20Cu%20Single%E2%80%90Atom%20Electrocatalyst%20for%20CO2%20Reduction%20to%20CH4&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Shi,%20Guodong&rft.date=2022-06-07&rft.volume=61&rft.issue=23&rft.spage=e202203569&rft.epage=n/a&rft.pages=e202203569-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202203569&rft_dat=%3Cproquest_wiley%3E2671203431%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671203431&rft_id=info:pmid/&rfr_iscdi=true