Finding line segments by stick growing

A method is described for extracting lineal features from an image using extended local information to provide robustness and sensitivity. The method utilizes both gradient magnitude and direction information, and incorporates explicit lineal and end-stop terms. These terms are combined nonlinearly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1994-05, Vol.16 (5), p.519-523
1. Verfasser: Nelson, R.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 523
container_issue 5
container_start_page 519
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 16
creator Nelson, R.C.
description A method is described for extracting lineal features from an image using extended local information to provide robustness and sensitivity. The method utilizes both gradient magnitude and direction information, and incorporates explicit lineal and end-stop terms. These terms are combined nonlinearly to produce an energy landscape in which local minima correspond to lineal features called sticks that can be represented as line segments. A hill climbing (stick-growing) process is used to find these minima. The method is compared to two others, and found to have improved gap-crossing characteristics.< >
doi_str_mv 10.1109/34.291445
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_26405345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>291445</ieee_id><sourcerecordid>26405345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-890ad1638dcb7046c826cbf335e074d4511b0fe7300b62adfe2a182eb0b0cbf13</originalsourceid><addsrcrecordid>eNqF0D1PwzAQBmALgUQpDKxMGRASQ8rZZyf2iCq-pEosMEe2c6kMaVLsVKj_nkCrrkw3vM-9Oh1jlxxmnIO5QzkThkupjtiEGzQ5KjTHbAK8ELnWQp-ys5Q-ALhUgBN28xi6OnTLrA0dZYmWK-qGlLltlobgP7Nl7L_H-JydNLZNdLGfU_b--PA2f84Xr08v8_tF7hHLIdcGbM0L1LV3JcjCa1F41yAqglLWUnHuoKESAVwhbN2QsFwLcuBgdByn40F_vevYf20oDdUqJE9tazvqN6kSWhiNAv6HhQSFUo3wdgd97FOK1FTrGFY2bisO1e_LKpTV7mWjvd6X2uRt20Tb-ZAOC5KX0kgc2dWOBSI6pPuOH2VfcRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26405345</pqid></control><display><type>article</type><title>Finding line segments by stick growing</title><source>IEEE Electronic Library (IEL)</source><creator>Nelson, R.C.</creator><creatorcontrib>Nelson, R.C.</creatorcontrib><description>A method is described for extracting lineal features from an image using extended local information to provide robustness and sensitivity. The method utilizes both gradient magnitude and direction information, and incorporates explicit lineal and end-stop terms. These terms are combined nonlinearly to produce an energy landscape in which local minima correspond to lineal features called sticks that can be represented as line segments. A hill climbing (stick-growing) process is used to find these minima. The method is compared to two others, and found to have improved gap-crossing characteristics.&lt; &gt;</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.291445</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Data mining ; Exact sciences and technology ; Feature extraction ; Geometry ; Image edge detection ; Image recognition ; Pattern recognition ; Pattern recognition. Digital image processing. Computational geometry ; Robot sensing systems ; Robotics and automation ; Robustness ; Shape</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1994-05, Vol.16 (5), p.519-523</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-890ad1638dcb7046c826cbf335e074d4511b0fe7300b62adfe2a182eb0b0cbf13</citedby><cites>FETCH-LOGICAL-c337t-890ad1638dcb7046c826cbf335e074d4511b0fe7300b62adfe2a182eb0b0cbf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/291445$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/291445$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4174943$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nelson, R.C.</creatorcontrib><title>Finding line segments by stick growing</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>A method is described for extracting lineal features from an image using extended local information to provide robustness and sensitivity. The method utilizes both gradient magnitude and direction information, and incorporates explicit lineal and end-stop terms. These terms are combined nonlinearly to produce an energy landscape in which local minima correspond to lineal features called sticks that can be represented as line segments. A hill climbing (stick-growing) process is used to find these minima. The method is compared to two others, and found to have improved gap-crossing characteristics.&lt; &gt;</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Data mining</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Geometry</subject><subject>Image edge detection</subject><subject>Image recognition</subject><subject>Pattern recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Robot sensing systems</subject><subject>Robotics and automation</subject><subject>Robustness</subject><subject>Shape</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqF0D1PwzAQBmALgUQpDKxMGRASQ8rZZyf2iCq-pEosMEe2c6kMaVLsVKj_nkCrrkw3vM-9Oh1jlxxmnIO5QzkThkupjtiEGzQ5KjTHbAK8ELnWQp-ys5Q-ALhUgBN28xi6OnTLrA0dZYmWK-qGlLltlobgP7Nl7L_H-JydNLZNdLGfU_b--PA2f84Xr08v8_tF7hHLIdcGbM0L1LV3JcjCa1F41yAqglLWUnHuoKESAVwhbN2QsFwLcuBgdByn40F_vevYf20oDdUqJE9tazvqN6kSWhiNAv6HhQSFUo3wdgd97FOK1FTrGFY2bisO1e_LKpTV7mWjvd6X2uRt20Tb-ZAOC5KX0kgc2dWOBSI6pPuOH2VfcRk</recordid><startdate>19940501</startdate><enddate>19940501</enddate><creator>Nelson, R.C.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19940501</creationdate><title>Finding line segments by stick growing</title><author>Nelson, R.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-890ad1638dcb7046c826cbf335e074d4511b0fe7300b62adfe2a182eb0b0cbf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Data mining</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Geometry</topic><topic>Image edge detection</topic><topic>Image recognition</topic><topic>Pattern recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Robot sensing systems</topic><topic>Robotics and automation</topic><topic>Robustness</topic><topic>Shape</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nelson, R.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nelson, R.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding line segments by stick growing</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1994-05-01</date><risdate>1994</risdate><volume>16</volume><issue>5</issue><spage>519</spage><epage>523</epage><pages>519-523</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>A method is described for extracting lineal features from an image using extended local information to provide robustness and sensitivity. The method utilizes both gradient magnitude and direction information, and incorporates explicit lineal and end-stop terms. These terms are combined nonlinearly to produce an energy landscape in which local minima correspond to lineal features called sticks that can be represented as line segments. A hill climbing (stick-growing) process is used to find these minima. The method is compared to two others, and found to have improved gap-crossing characteristics.&lt; &gt;</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/34.291445</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 1994-05, Vol.16 (5), p.519-523
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_miscellaneous_26405345
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Data mining
Exact sciences and technology
Feature extraction
Geometry
Image edge detection
Image recognition
Pattern recognition
Pattern recognition. Digital image processing. Computational geometry
Robot sensing systems
Robotics and automation
Robustness
Shape
title Finding line segments by stick growing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20line%20segments%20by%20stick%20growing&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Nelson,%20R.C.&rft.date=1994-05-01&rft.volume=16&rft.issue=5&rft.spage=519&rft.epage=523&rft.pages=519-523&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.291445&rft_dat=%3Cproquest_RIE%3E26405345%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26405345&rft_id=info:pmid/&rft_ieee_id=291445&rfr_iscdi=true