A biomimetic zeolite-based nanoenzyme contributes to neuroprotection in the neurovascular unit after ischaemic stroke via efficient removal of zinc and ROS
Zeolite-based nanomaterials have a large number of applications in the field of medicine due to their high porosity, biocompatibility and biological stability. In this study, we designed cerium (Ce)-doped Linde Type A (LTA) zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nan...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2022-05, Vol.144, p.142-156 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 156 |
---|---|
container_issue | |
container_start_page | 142 |
container_title | Acta biomaterialia |
container_volume | 144 |
creator | Huang, Zhixuan Qian, Kun Chen, Jin Qi, Yao E, Yifeng Liang, Jia Zhao, Liang |
description | Zeolite-based nanomaterials have a large number of applications in the field of medicine due to their high porosity, biocompatibility and biological stability. In this study, we designed cerium (Ce)-doped Linde Type A (LTA) zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nanoenzyme to reduce dysfunction of the neurovascular unit (NVU) and attenuate cerebral ischaemia-reperfusion (I/R) injury. Owing to its unique adsorption capacity and mimetic catalytic activities, Ce@Zeo-NMs adsorbed excess zinc ions and exhibited scavenging activity against reactive oxygen species (ROS) induced by acute I/R, thus reshaping the oxidative and zinc microenvironment in the ischaemic brain. In vivo results demonstrated that Ce@Zeo-NMs significantly reduced ischaemic damage to the NVU by decreasing the infarct area, protecting against breakdown of the blood–brain barrier (BBB) via inhibiting the degradation of tight junction proteins (TJPs) and inhibiting activation of microglia and astrocytes in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). Taken together, these findings indicated that Ce@Zeo-NMs may serve as a promising dual-targeting therapeutic agent for alleviating cerebral I/R injury.
Cerium (Ce)-doped Linde Type A zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nanoenzyme were designed for inducing neuroprotection after ischaemic stroke by reducing dysfunction of the neurovascular unit (NVU). Ce@Zeo-NMs had the ability to adsorb excessive Zn2+ and showed mimetic enzymatic activities. As a result, Ce@Zeo-NMs protected against cerebral ischaemia and reduced the damage of NVU by improving the integrity of blood brain barrier (BBB) and inhibiting activation of microglia and astrocytes in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). These findings indicated that Ce@Zeo-NMs may serve as a therapeutic strategy for neuroprotection and functional recovery upon ischaemic stroke onset.
[Display omitted] |
doi_str_mv | 10.1016/j.actbio.2022.03.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2640329404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706122001490</els_id><sourcerecordid>2672768448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-26a721491ae35611379599c391a2ef8998cd242ad8bc0fab70ad1296d8b54caf3</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoMotlb_gUjAjZsZ8zWTzEYoxS8oFFpdh0zmhOY6k9Qkc6H3r_hnzWWqiy66ysnhec_Xi9BbSlpKaP9x1xpbRh9bRhhrCW8JVc_QKVVSNbLr1fMaS8EaSXp6gl7lvCOEK8rUS3TCOzb0QohT9Occ1xqLX6B4iw8QZ1-gGU2GCQcTIoTD_QLYxlCSH9cCGZeIA6wp3qVYwBYfA_YBl1vY0nuT7TqbhNfgCzauQMI-21sDS-2QS4q_AO-9weCctx5CwQmWKptxdPjgg8UmTPj66uY1euHMnOHNw3uGfn75_OPiW3N59fX7xfllY3nHS8N6IxkVAzXAu55SLoduGCyvCQZODYOyExPMTGq0xJlREjPRun_9d8Iax8_Qh61u3ej3CrnopQ4M82wCxDVr1gvC2SCIqOj7R-gurinU6SolmeyVEKpSYqNsijkncPou-cWke02JPpqnd3ozTx_N04Tral6VvXsovo4LTP9F_9yqwKcNgHqNvYek8_GAFiafqhN6iv7pDn8BBNmvkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672768448</pqid></control><display><type>article</type><title>A biomimetic zeolite-based nanoenzyme contributes to neuroprotection in the neurovascular unit after ischaemic stroke via efficient removal of zinc and ROS</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Huang, Zhixuan ; Qian, Kun ; Chen, Jin ; Qi, Yao ; E, Yifeng ; Liang, Jia ; Zhao, Liang</creator><creatorcontrib>Huang, Zhixuan ; Qian, Kun ; Chen, Jin ; Qi, Yao ; E, Yifeng ; Liang, Jia ; Zhao, Liang</creatorcontrib><description>Zeolite-based nanomaterials have a large number of applications in the field of medicine due to their high porosity, biocompatibility and biological stability. In this study, we designed cerium (Ce)-doped Linde Type A (LTA) zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nanoenzyme to reduce dysfunction of the neurovascular unit (NVU) and attenuate cerebral ischaemia-reperfusion (I/R) injury. Owing to its unique adsorption capacity and mimetic catalytic activities, Ce@Zeo-NMs adsorbed excess zinc ions and exhibited scavenging activity against reactive oxygen species (ROS) induced by acute I/R, thus reshaping the oxidative and zinc microenvironment in the ischaemic brain. In vivo results demonstrated that Ce@Zeo-NMs significantly reduced ischaemic damage to the NVU by decreasing the infarct area, protecting against breakdown of the blood–brain barrier (BBB) via inhibiting the degradation of tight junction proteins (TJPs) and inhibiting activation of microglia and astrocytes in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). Taken together, these findings indicated that Ce@Zeo-NMs may serve as a promising dual-targeting therapeutic agent for alleviating cerebral I/R injury.
Cerium (Ce)-doped Linde Type A zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nanoenzyme were designed for inducing neuroprotection after ischaemic stroke by reducing dysfunction of the neurovascular unit (NVU). Ce@Zeo-NMs had the ability to adsorb excessive Zn2+ and showed mimetic enzymatic activities. As a result, Ce@Zeo-NMs protected against cerebral ischaemia and reduced the damage of NVU by improving the integrity of blood brain barrier (BBB) and inhibiting activation of microglia and astrocytes in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). These findings indicated that Ce@Zeo-NMs may serve as a therapeutic strategy for neuroprotection and functional recovery upon ischaemic stroke onset.
[Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2022.03.018</identifier><identifier>PMID: 35296444</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Astrocytes ; Biocompatibility ; Biomimetics ; Blood-brain barrier ; Blood-Brain Barrier - metabolism ; Brain damage ; Brain Ischemia - drug therapy ; Cerebral blood flow ; Cerium ; Cerium - pharmacology ; Chemical compounds ; Infarction, Middle Cerebral Artery - complications ; Infarction, Middle Cerebral Artery - drug therapy ; Infarction, Middle Cerebral Artery - metabolism ; Ischemia ; Ischemic Stroke ; Microenvironments ; Microglia ; Nanoenzyme ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Neuroprotection ; Occlusion ; Pharmacology ; Porosity ; Rats ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Reperfusion ; Reperfusion Injury - drug therapy ; ROS ; Scavenging ; Stroke - drug therapy ; Zeolite ; Zeolites ; Zeolites - metabolism ; Zeolites - pharmacology ; Zeolites - therapeutic use ; Zinc ; Zinc - metabolism</subject><ispartof>Acta biomaterialia, 2022-05, Vol.144, p.142-156</ispartof><rights>2022 Acta Materialia Inc.</rights><rights>Copyright © 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV May 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-26a721491ae35611379599c391a2ef8998cd242ad8bc0fab70ad1296d8b54caf3</citedby><cites>FETCH-LOGICAL-c353t-26a721491ae35611379599c391a2ef8998cd242ad8bc0fab70ad1296d8b54caf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2022.03.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35296444$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Zhixuan</creatorcontrib><creatorcontrib>Qian, Kun</creatorcontrib><creatorcontrib>Chen, Jin</creatorcontrib><creatorcontrib>Qi, Yao</creatorcontrib><creatorcontrib>E, Yifeng</creatorcontrib><creatorcontrib>Liang, Jia</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><title>A biomimetic zeolite-based nanoenzyme contributes to neuroprotection in the neurovascular unit after ischaemic stroke via efficient removal of zinc and ROS</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Zeolite-based nanomaterials have a large number of applications in the field of medicine due to their high porosity, biocompatibility and biological stability. In this study, we designed cerium (Ce)-doped Linde Type A (LTA) zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nanoenzyme to reduce dysfunction of the neurovascular unit (NVU) and attenuate cerebral ischaemia-reperfusion (I/R) injury. Owing to its unique adsorption capacity and mimetic catalytic activities, Ce@Zeo-NMs adsorbed excess zinc ions and exhibited scavenging activity against reactive oxygen species (ROS) induced by acute I/R, thus reshaping the oxidative and zinc microenvironment in the ischaemic brain. In vivo results demonstrated that Ce@Zeo-NMs significantly reduced ischaemic damage to the NVU by decreasing the infarct area, protecting against breakdown of the blood–brain barrier (BBB) via inhibiting the degradation of tight junction proteins (TJPs) and inhibiting activation of microglia and astrocytes in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). Taken together, these findings indicated that Ce@Zeo-NMs may serve as a promising dual-targeting therapeutic agent for alleviating cerebral I/R injury.
Cerium (Ce)-doped Linde Type A zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nanoenzyme were designed for inducing neuroprotection after ischaemic stroke by reducing dysfunction of the neurovascular unit (NVU). Ce@Zeo-NMs had the ability to adsorb excessive Zn2+ and showed mimetic enzymatic activities. As a result, Ce@Zeo-NMs protected against cerebral ischaemia and reduced the damage of NVU by improving the integrity of blood brain barrier (BBB) and inhibiting activation of microglia and astrocytes in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). These findings indicated that Ce@Zeo-NMs may serve as a therapeutic strategy for neuroprotection and functional recovery upon ischaemic stroke onset.
[Display omitted]</description><subject>Animals</subject><subject>Astrocytes</subject><subject>Biocompatibility</subject><subject>Biomimetics</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain damage</subject><subject>Brain Ischemia - drug therapy</subject><subject>Cerebral blood flow</subject><subject>Cerium</subject><subject>Cerium - pharmacology</subject><subject>Chemical compounds</subject><subject>Infarction, Middle Cerebral Artery - complications</subject><subject>Infarction, Middle Cerebral Artery - drug therapy</subject><subject>Infarction, Middle Cerebral Artery - metabolism</subject><subject>Ischemia</subject><subject>Ischemic Stroke</subject><subject>Microenvironments</subject><subject>Microglia</subject><subject>Nanoenzyme</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Neuroprotection</subject><subject>Occlusion</subject><subject>Pharmacology</subject><subject>Porosity</subject><subject>Rats</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Reperfusion</subject><subject>Reperfusion Injury - drug therapy</subject><subject>ROS</subject><subject>Scavenging</subject><subject>Stroke - drug therapy</subject><subject>Zeolite</subject><subject>Zeolites</subject><subject>Zeolites - metabolism</subject><subject>Zeolites - pharmacology</subject><subject>Zeolites - therapeutic use</subject><subject>Zinc</subject><subject>Zinc - metabolism</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1rFTEUhoMotlb_gUjAjZsZ8zWTzEYoxS8oFFpdh0zmhOY6k9Qkc6H3r_hnzWWqiy66ysnhec_Xi9BbSlpKaP9x1xpbRh9bRhhrCW8JVc_QKVVSNbLr1fMaS8EaSXp6gl7lvCOEK8rUS3TCOzb0QohT9Occ1xqLX6B4iw8QZ1-gGU2GCQcTIoTD_QLYxlCSH9cCGZeIA6wp3qVYwBYfA_YBl1vY0nuT7TqbhNfgCzauQMI-21sDS-2QS4q_AO-9weCctx5CwQmWKptxdPjgg8UmTPj66uY1euHMnOHNw3uGfn75_OPiW3N59fX7xfllY3nHS8N6IxkVAzXAu55SLoduGCyvCQZODYOyExPMTGq0xJlREjPRun_9d8Iax8_Qh61u3ej3CrnopQ4M82wCxDVr1gvC2SCIqOj7R-gurinU6SolmeyVEKpSYqNsijkncPou-cWke02JPpqnd3ozTx_N04Tral6VvXsovo4LTP9F_9yqwKcNgHqNvYek8_GAFiafqhN6iv7pDn8BBNmvkg</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Huang, Zhixuan</creator><creator>Qian, Kun</creator><creator>Chen, Jin</creator><creator>Qi, Yao</creator><creator>E, Yifeng</creator><creator>Liang, Jia</creator><creator>Zhao, Liang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202205</creationdate><title>A biomimetic zeolite-based nanoenzyme contributes to neuroprotection in the neurovascular unit after ischaemic stroke via efficient removal of zinc and ROS</title><author>Huang, Zhixuan ; Qian, Kun ; Chen, Jin ; Qi, Yao ; E, Yifeng ; Liang, Jia ; Zhao, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-26a721491ae35611379599c391a2ef8998cd242ad8bc0fab70ad1296d8b54caf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Astrocytes</topic><topic>Biocompatibility</topic><topic>Biomimetics</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain damage</topic><topic>Brain Ischemia - drug therapy</topic><topic>Cerebral blood flow</topic><topic>Cerium</topic><topic>Cerium - pharmacology</topic><topic>Chemical compounds</topic><topic>Infarction, Middle Cerebral Artery - complications</topic><topic>Infarction, Middle Cerebral Artery - drug therapy</topic><topic>Infarction, Middle Cerebral Artery - metabolism</topic><topic>Ischemia</topic><topic>Ischemic Stroke</topic><topic>Microenvironments</topic><topic>Microglia</topic><topic>Nanoenzyme</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Neuroprotection</topic><topic>Occlusion</topic><topic>Pharmacology</topic><topic>Porosity</topic><topic>Rats</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Reperfusion</topic><topic>Reperfusion Injury - drug therapy</topic><topic>ROS</topic><topic>Scavenging</topic><topic>Stroke - drug therapy</topic><topic>Zeolite</topic><topic>Zeolites</topic><topic>Zeolites - metabolism</topic><topic>Zeolites - pharmacology</topic><topic>Zeolites - therapeutic use</topic><topic>Zinc</topic><topic>Zinc - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zhixuan</creatorcontrib><creatorcontrib>Qian, Kun</creatorcontrib><creatorcontrib>Chen, Jin</creatorcontrib><creatorcontrib>Qi, Yao</creatorcontrib><creatorcontrib>E, Yifeng</creatorcontrib><creatorcontrib>Liang, Jia</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zhixuan</au><au>Qian, Kun</au><au>Chen, Jin</au><au>Qi, Yao</au><au>E, Yifeng</au><au>Liang, Jia</au><au>Zhao, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A biomimetic zeolite-based nanoenzyme contributes to neuroprotection in the neurovascular unit after ischaemic stroke via efficient removal of zinc and ROS</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2022-05</date><risdate>2022</risdate><volume>144</volume><spage>142</spage><epage>156</epage><pages>142-156</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Zeolite-based nanomaterials have a large number of applications in the field of medicine due to their high porosity, biocompatibility and biological stability. In this study, we designed cerium (Ce)-doped Linde Type A (LTA) zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nanoenzyme to reduce dysfunction of the neurovascular unit (NVU) and attenuate cerebral ischaemia-reperfusion (I/R) injury. Owing to its unique adsorption capacity and mimetic catalytic activities, Ce@Zeo-NMs adsorbed excess zinc ions and exhibited scavenging activity against reactive oxygen species (ROS) induced by acute I/R, thus reshaping the oxidative and zinc microenvironment in the ischaemic brain. In vivo results demonstrated that Ce@Zeo-NMs significantly reduced ischaemic damage to the NVU by decreasing the infarct area, protecting against breakdown of the blood–brain barrier (BBB) via inhibiting the degradation of tight junction proteins (TJPs) and inhibiting activation of microglia and astrocytes in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). Taken together, these findings indicated that Ce@Zeo-NMs may serve as a promising dual-targeting therapeutic agent for alleviating cerebral I/R injury.
Cerium (Ce)-doped Linde Type A zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nanoenzyme were designed for inducing neuroprotection after ischaemic stroke by reducing dysfunction of the neurovascular unit (NVU). Ce@Zeo-NMs had the ability to adsorb excessive Zn2+ and showed mimetic enzymatic activities. As a result, Ce@Zeo-NMs protected against cerebral ischaemia and reduced the damage of NVU by improving the integrity of blood brain barrier (BBB) and inhibiting activation of microglia and astrocytes in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). These findings indicated that Ce@Zeo-NMs may serve as a therapeutic strategy for neuroprotection and functional recovery upon ischaemic stroke onset.
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35296444</pmid><doi>10.1016/j.actbio.2022.03.018</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2022-05, Vol.144, p.142-156 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_2640329404 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Astrocytes Biocompatibility Biomimetics Blood-brain barrier Blood-Brain Barrier - metabolism Brain damage Brain Ischemia - drug therapy Cerebral blood flow Cerium Cerium - pharmacology Chemical compounds Infarction, Middle Cerebral Artery - complications Infarction, Middle Cerebral Artery - drug therapy Infarction, Middle Cerebral Artery - metabolism Ischemia Ischemic Stroke Microenvironments Microglia Nanoenzyme Nanomaterials Nanoparticles Nanotechnology Neuroprotection Occlusion Pharmacology Porosity Rats Reactive oxygen species Reactive Oxygen Species - metabolism Reperfusion Reperfusion Injury - drug therapy ROS Scavenging Stroke - drug therapy Zeolite Zeolites Zeolites - metabolism Zeolites - pharmacology Zeolites - therapeutic use Zinc Zinc - metabolism |
title | A biomimetic zeolite-based nanoenzyme contributes to neuroprotection in the neurovascular unit after ischaemic stroke via efficient removal of zinc and ROS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A03%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20biomimetic%20zeolite-based%20nanoenzyme%20contributes%20to%20neuroprotection%20in%20the%20neurovascular%20unit%20after%20ischaemic%20stroke%20via%20efficient%20removal%20of%20zinc%20and%20ROS&rft.jtitle=Acta%20biomaterialia&rft.au=Huang,%20Zhixuan&rft.date=2022-05&rft.volume=144&rft.spage=142&rft.epage=156&rft.pages=142-156&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2022.03.018&rft_dat=%3Cproquest_cross%3E2672768448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672768448&rft_id=info:pmid/35296444&rft_els_id=S1742706122001490&rfr_iscdi=true |