A biomimetic zeolite-based nanoenzyme contributes to neuroprotection in the neurovascular unit after ischaemic stroke via efficient removal of zinc and ROS

Zeolite-based nanomaterials have a large number of applications in the field of medicine due to their high porosity, biocompatibility and biological stability. In this study, we designed cerium (Ce)-doped Linde Type A (LTA) zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2022-05, Vol.144, p.142-156
Hauptverfasser: Huang, Zhixuan, Qian, Kun, Chen, Jin, Qi, Yao, E, Yifeng, Liang, Jia, Zhao, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 156
container_issue
container_start_page 142
container_title Acta biomaterialia
container_volume 144
creator Huang, Zhixuan
Qian, Kun
Chen, Jin
Qi, Yao
E, Yifeng
Liang, Jia
Zhao, Liang
description Zeolite-based nanomaterials have a large number of applications in the field of medicine due to their high porosity, biocompatibility and biological stability. In this study, we designed cerium (Ce)-doped Linde Type A (LTA) zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nanoenzyme to reduce dysfunction of the neurovascular unit (NVU) and attenuate cerebral ischaemia-reperfusion (I/R) injury. Owing to its unique adsorption capacity and mimetic catalytic activities, Ce@Zeo-NMs adsorbed excess zinc ions and exhibited scavenging activity against reactive oxygen species (ROS) induced by acute I/R, thus reshaping the oxidative and zinc microenvironment in the ischaemic brain. In vivo results demonstrated that Ce@Zeo-NMs significantly reduced ischaemic damage to the NVU by decreasing the infarct area, protecting against breakdown of the blood–brain barrier (BBB) via inhibiting the degradation of tight junction proteins (TJPs) and inhibiting activation of microglia and astrocytes in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). Taken together, these findings indicated that Ce@Zeo-NMs may serve as a promising dual-targeting therapeutic agent for alleviating cerebral I/R injury. Cerium (Ce)-doped Linde Type A zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nanoenzyme were designed for inducing neuroprotection after ischaemic stroke by reducing dysfunction of the neurovascular unit (NVU). Ce@Zeo-NMs had the ability to adsorb excessive Zn2+ and showed mimetic enzymatic activities. As a result, Ce@Zeo-NMs protected against cerebral ischaemia and reduced the damage of NVU by improving the integrity of blood brain barrier (BBB) and inhibiting activation of microglia and astrocytes in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). These findings indicated that Ce@Zeo-NMs may serve as a therapeutic strategy for neuroprotection and functional recovery upon ischaemic stroke onset. [Display omitted]
doi_str_mv 10.1016/j.actbio.2022.03.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2640329404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706122001490</els_id><sourcerecordid>2672768448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-26a721491ae35611379599c391a2ef8998cd242ad8bc0fab70ad1296d8b54caf3</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoMotlb_gUjAjZsZ8zWTzEYoxS8oFFpdh0zmhOY6k9Qkc6H3r_hnzWWqiy66ysnhec_Xi9BbSlpKaP9x1xpbRh9bRhhrCW8JVc_QKVVSNbLr1fMaS8EaSXp6gl7lvCOEK8rUS3TCOzb0QohT9Occ1xqLX6B4iw8QZ1-gGU2GCQcTIoTD_QLYxlCSH9cCGZeIA6wp3qVYwBYfA_YBl1vY0nuT7TqbhNfgCzauQMI-21sDS-2QS4q_AO-9weCctx5CwQmWKptxdPjgg8UmTPj66uY1euHMnOHNw3uGfn75_OPiW3N59fX7xfllY3nHS8N6IxkVAzXAu55SLoduGCyvCQZODYOyExPMTGq0xJlREjPRun_9d8Iax8_Qh61u3ej3CrnopQ4M82wCxDVr1gvC2SCIqOj7R-gurinU6SolmeyVEKpSYqNsijkncPou-cWke02JPpqnd3ozTx_N04Tral6VvXsovo4LTP9F_9yqwKcNgHqNvYek8_GAFiafqhN6iv7pDn8BBNmvkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672768448</pqid></control><display><type>article</type><title>A biomimetic zeolite-based nanoenzyme contributes to neuroprotection in the neurovascular unit after ischaemic stroke via efficient removal of zinc and ROS</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Huang, Zhixuan ; Qian, Kun ; Chen, Jin ; Qi, Yao ; E, Yifeng ; Liang, Jia ; Zhao, Liang</creator><creatorcontrib>Huang, Zhixuan ; Qian, Kun ; Chen, Jin ; Qi, Yao ; E, Yifeng ; Liang, Jia ; Zhao, Liang</creatorcontrib><description>Zeolite-based nanomaterials have a large number of applications in the field of medicine due to their high porosity, biocompatibility and biological stability. In this study, we designed cerium (Ce)-doped Linde Type A (LTA) zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nanoenzyme to reduce dysfunction of the neurovascular unit (NVU) and attenuate cerebral ischaemia-reperfusion (I/R) injury. Owing to its unique adsorption capacity and mimetic catalytic activities, Ce@Zeo-NMs adsorbed excess zinc ions and exhibited scavenging activity against reactive oxygen species (ROS) induced by acute I/R, thus reshaping the oxidative and zinc microenvironment in the ischaemic brain. In vivo results demonstrated that Ce@Zeo-NMs significantly reduced ischaemic damage to the NVU by decreasing the infarct area, protecting against breakdown of the blood–brain barrier (BBB) via inhibiting the degradation of tight junction proteins (TJPs) and inhibiting activation of microglia and astrocytes in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). Taken together, these findings indicated that Ce@Zeo-NMs may serve as a promising dual-targeting therapeutic agent for alleviating cerebral I/R injury. Cerium (Ce)-doped Linde Type A zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nanoenzyme were designed for inducing neuroprotection after ischaemic stroke by reducing dysfunction of the neurovascular unit (NVU). Ce@Zeo-NMs had the ability to adsorb excessive Zn2+ and showed mimetic enzymatic activities. As a result, Ce@Zeo-NMs protected against cerebral ischaemia and reduced the damage of NVU by improving the integrity of blood brain barrier (BBB) and inhibiting activation of microglia and astrocytes in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). These findings indicated that Ce@Zeo-NMs may serve as a therapeutic strategy for neuroprotection and functional recovery upon ischaemic stroke onset. [Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2022.03.018</identifier><identifier>PMID: 35296444</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Astrocytes ; Biocompatibility ; Biomimetics ; Blood-brain barrier ; Blood-Brain Barrier - metabolism ; Brain damage ; Brain Ischemia - drug therapy ; Cerebral blood flow ; Cerium ; Cerium - pharmacology ; Chemical compounds ; Infarction, Middle Cerebral Artery - complications ; Infarction, Middle Cerebral Artery - drug therapy ; Infarction, Middle Cerebral Artery - metabolism ; Ischemia ; Ischemic Stroke ; Microenvironments ; Microglia ; Nanoenzyme ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Neuroprotection ; Occlusion ; Pharmacology ; Porosity ; Rats ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Reperfusion ; Reperfusion Injury - drug therapy ; ROS ; Scavenging ; Stroke - drug therapy ; Zeolite ; Zeolites ; Zeolites - metabolism ; Zeolites - pharmacology ; Zeolites - therapeutic use ; Zinc ; Zinc - metabolism</subject><ispartof>Acta biomaterialia, 2022-05, Vol.144, p.142-156</ispartof><rights>2022 Acta Materialia Inc.</rights><rights>Copyright © 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV May 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-26a721491ae35611379599c391a2ef8998cd242ad8bc0fab70ad1296d8b54caf3</citedby><cites>FETCH-LOGICAL-c353t-26a721491ae35611379599c391a2ef8998cd242ad8bc0fab70ad1296d8b54caf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2022.03.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35296444$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Zhixuan</creatorcontrib><creatorcontrib>Qian, Kun</creatorcontrib><creatorcontrib>Chen, Jin</creatorcontrib><creatorcontrib>Qi, Yao</creatorcontrib><creatorcontrib>E, Yifeng</creatorcontrib><creatorcontrib>Liang, Jia</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><title>A biomimetic zeolite-based nanoenzyme contributes to neuroprotection in the neurovascular unit after ischaemic stroke via efficient removal of zinc and ROS</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Zeolite-based nanomaterials have a large number of applications in the field of medicine due to their high porosity, biocompatibility and biological stability. In this study, we designed cerium (Ce)-doped Linde Type A (LTA) zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nanoenzyme to reduce dysfunction of the neurovascular unit (NVU) and attenuate cerebral ischaemia-reperfusion (I/R) injury. Owing to its unique adsorption capacity and mimetic catalytic activities, Ce@Zeo-NMs adsorbed excess zinc ions and exhibited scavenging activity against reactive oxygen species (ROS) induced by acute I/R, thus reshaping the oxidative and zinc microenvironment in the ischaemic brain. In vivo results demonstrated that Ce@Zeo-NMs significantly reduced ischaemic damage to the NVU by decreasing the infarct area, protecting against breakdown of the blood–brain barrier (BBB) via inhibiting the degradation of tight junction proteins (TJPs) and inhibiting activation of microglia and astrocytes in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). Taken together, these findings indicated that Ce@Zeo-NMs may serve as a promising dual-targeting therapeutic agent for alleviating cerebral I/R injury. Cerium (Ce)-doped Linde Type A zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nanoenzyme were designed for inducing neuroprotection after ischaemic stroke by reducing dysfunction of the neurovascular unit (NVU). Ce@Zeo-NMs had the ability to adsorb excessive Zn2+ and showed mimetic enzymatic activities. As a result, Ce@Zeo-NMs protected against cerebral ischaemia and reduced the damage of NVU by improving the integrity of blood brain barrier (BBB) and inhibiting activation of microglia and astrocytes in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). These findings indicated that Ce@Zeo-NMs may serve as a therapeutic strategy for neuroprotection and functional recovery upon ischaemic stroke onset. [Display omitted]</description><subject>Animals</subject><subject>Astrocytes</subject><subject>Biocompatibility</subject><subject>Biomimetics</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain damage</subject><subject>Brain Ischemia - drug therapy</subject><subject>Cerebral blood flow</subject><subject>Cerium</subject><subject>Cerium - pharmacology</subject><subject>Chemical compounds</subject><subject>Infarction, Middle Cerebral Artery - complications</subject><subject>Infarction, Middle Cerebral Artery - drug therapy</subject><subject>Infarction, Middle Cerebral Artery - metabolism</subject><subject>Ischemia</subject><subject>Ischemic Stroke</subject><subject>Microenvironments</subject><subject>Microglia</subject><subject>Nanoenzyme</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Neuroprotection</subject><subject>Occlusion</subject><subject>Pharmacology</subject><subject>Porosity</subject><subject>Rats</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Reperfusion</subject><subject>Reperfusion Injury - drug therapy</subject><subject>ROS</subject><subject>Scavenging</subject><subject>Stroke - drug therapy</subject><subject>Zeolite</subject><subject>Zeolites</subject><subject>Zeolites - metabolism</subject><subject>Zeolites - pharmacology</subject><subject>Zeolites - therapeutic use</subject><subject>Zinc</subject><subject>Zinc - metabolism</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1rFTEUhoMotlb_gUjAjZsZ8zWTzEYoxS8oFFpdh0zmhOY6k9Qkc6H3r_hnzWWqiy66ysnhec_Xi9BbSlpKaP9x1xpbRh9bRhhrCW8JVc_QKVVSNbLr1fMaS8EaSXp6gl7lvCOEK8rUS3TCOzb0QohT9Occ1xqLX6B4iw8QZ1-gGU2GCQcTIoTD_QLYxlCSH9cCGZeIA6wp3qVYwBYfA_YBl1vY0nuT7TqbhNfgCzauQMI-21sDS-2QS4q_AO-9weCctx5CwQmWKptxdPjgg8UmTPj66uY1euHMnOHNw3uGfn75_OPiW3N59fX7xfllY3nHS8N6IxkVAzXAu55SLoduGCyvCQZODYOyExPMTGq0xJlREjPRun_9d8Iax8_Qh61u3ej3CrnopQ4M82wCxDVr1gvC2SCIqOj7R-gurinU6SolmeyVEKpSYqNsijkncPou-cWke02JPpqnd3ozTx_N04Tral6VvXsovo4LTP9F_9yqwKcNgHqNvYek8_GAFiafqhN6iv7pDn8BBNmvkg</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Huang, Zhixuan</creator><creator>Qian, Kun</creator><creator>Chen, Jin</creator><creator>Qi, Yao</creator><creator>E, Yifeng</creator><creator>Liang, Jia</creator><creator>Zhao, Liang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202205</creationdate><title>A biomimetic zeolite-based nanoenzyme contributes to neuroprotection in the neurovascular unit after ischaemic stroke via efficient removal of zinc and ROS</title><author>Huang, Zhixuan ; Qian, Kun ; Chen, Jin ; Qi, Yao ; E, Yifeng ; Liang, Jia ; Zhao, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-26a721491ae35611379599c391a2ef8998cd242ad8bc0fab70ad1296d8b54caf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Astrocytes</topic><topic>Biocompatibility</topic><topic>Biomimetics</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain damage</topic><topic>Brain Ischemia - drug therapy</topic><topic>Cerebral blood flow</topic><topic>Cerium</topic><topic>Cerium - pharmacology</topic><topic>Chemical compounds</topic><topic>Infarction, Middle Cerebral Artery - complications</topic><topic>Infarction, Middle Cerebral Artery - drug therapy</topic><topic>Infarction, Middle Cerebral Artery - metabolism</topic><topic>Ischemia</topic><topic>Ischemic Stroke</topic><topic>Microenvironments</topic><topic>Microglia</topic><topic>Nanoenzyme</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Neuroprotection</topic><topic>Occlusion</topic><topic>Pharmacology</topic><topic>Porosity</topic><topic>Rats</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Reperfusion</topic><topic>Reperfusion Injury - drug therapy</topic><topic>ROS</topic><topic>Scavenging</topic><topic>Stroke - drug therapy</topic><topic>Zeolite</topic><topic>Zeolites</topic><topic>Zeolites - metabolism</topic><topic>Zeolites - pharmacology</topic><topic>Zeolites - therapeutic use</topic><topic>Zinc</topic><topic>Zinc - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zhixuan</creatorcontrib><creatorcontrib>Qian, Kun</creatorcontrib><creatorcontrib>Chen, Jin</creatorcontrib><creatorcontrib>Qi, Yao</creatorcontrib><creatorcontrib>E, Yifeng</creatorcontrib><creatorcontrib>Liang, Jia</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zhixuan</au><au>Qian, Kun</au><au>Chen, Jin</au><au>Qi, Yao</au><au>E, Yifeng</au><au>Liang, Jia</au><au>Zhao, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A biomimetic zeolite-based nanoenzyme contributes to neuroprotection in the neurovascular unit after ischaemic stroke via efficient removal of zinc and ROS</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2022-05</date><risdate>2022</risdate><volume>144</volume><spage>142</spage><epage>156</epage><pages>142-156</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Zeolite-based nanomaterials have a large number of applications in the field of medicine due to their high porosity, biocompatibility and biological stability. In this study, we designed cerium (Ce)-doped Linde Type A (LTA) zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nanoenzyme to reduce dysfunction of the neurovascular unit (NVU) and attenuate cerebral ischaemia-reperfusion (I/R) injury. Owing to its unique adsorption capacity and mimetic catalytic activities, Ce@Zeo-NMs adsorbed excess zinc ions and exhibited scavenging activity against reactive oxygen species (ROS) induced by acute I/R, thus reshaping the oxidative and zinc microenvironment in the ischaemic brain. In vivo results demonstrated that Ce@Zeo-NMs significantly reduced ischaemic damage to the NVU by decreasing the infarct area, protecting against breakdown of the blood–brain barrier (BBB) via inhibiting the degradation of tight junction proteins (TJPs) and inhibiting activation of microglia and astrocytes in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). Taken together, these findings indicated that Ce@Zeo-NMs may serve as a promising dual-targeting therapeutic agent for alleviating cerebral I/R injury. Cerium (Ce)-doped Linde Type A zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nanoenzyme were designed for inducing neuroprotection after ischaemic stroke by reducing dysfunction of the neurovascular unit (NVU). Ce@Zeo-NMs had the ability to adsorb excessive Zn2+ and showed mimetic enzymatic activities. As a result, Ce@Zeo-NMs protected against cerebral ischaemia and reduced the damage of NVU by improving the integrity of blood brain barrier (BBB) and inhibiting activation of microglia and astrocytes in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). These findings indicated that Ce@Zeo-NMs may serve as a therapeutic strategy for neuroprotection and functional recovery upon ischaemic stroke onset. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35296444</pmid><doi>10.1016/j.actbio.2022.03.018</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2022-05, Vol.144, p.142-156
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_2640329404
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Astrocytes
Biocompatibility
Biomimetics
Blood-brain barrier
Blood-Brain Barrier - metabolism
Brain damage
Brain Ischemia - drug therapy
Cerebral blood flow
Cerium
Cerium - pharmacology
Chemical compounds
Infarction, Middle Cerebral Artery - complications
Infarction, Middle Cerebral Artery - drug therapy
Infarction, Middle Cerebral Artery - metabolism
Ischemia
Ischemic Stroke
Microenvironments
Microglia
Nanoenzyme
Nanomaterials
Nanoparticles
Nanotechnology
Neuroprotection
Occlusion
Pharmacology
Porosity
Rats
Reactive oxygen species
Reactive Oxygen Species - metabolism
Reperfusion
Reperfusion Injury - drug therapy
ROS
Scavenging
Stroke - drug therapy
Zeolite
Zeolites
Zeolites - metabolism
Zeolites - pharmacology
Zeolites - therapeutic use
Zinc
Zinc - metabolism
title A biomimetic zeolite-based nanoenzyme contributes to neuroprotection in the neurovascular unit after ischaemic stroke via efficient removal of zinc and ROS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A03%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20biomimetic%20zeolite-based%20nanoenzyme%20contributes%20to%20neuroprotection%20in%20the%20neurovascular%20unit%20after%20ischaemic%20stroke%20via%20efficient%20removal%20of%20zinc%20and%20ROS&rft.jtitle=Acta%20biomaterialia&rft.au=Huang,%20Zhixuan&rft.date=2022-05&rft.volume=144&rft.spage=142&rft.epage=156&rft.pages=142-156&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2022.03.018&rft_dat=%3Cproquest_cross%3E2672768448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672768448&rft_id=info:pmid/35296444&rft_els_id=S1742706122001490&rfr_iscdi=true