Energetic rigidity. I. A unifying theory of mechanical stability

Rigidity regulates the integrity and function of many physical and biological systems. This is the first of two papers on the origin of rigidity, wherein we propose that "energetic rigidity," in which all nontrivial deformations raise the energy of a structure, is a more useful notion of r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2022-02, Vol.105 (2-2), p.025003-025003, Article 025003
Hauptverfasser: Damavandi, Ojan Khatib, Hagh, Varda F, Santangelo, Christian D, Manning, M Lisa
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 025003
container_issue 2-2
container_start_page 025003
container_title Physical review. E
container_volume 105
creator Damavandi, Ojan Khatib
Hagh, Varda F
Santangelo, Christian D
Manning, M Lisa
description Rigidity regulates the integrity and function of many physical and biological systems. This is the first of two papers on the origin of rigidity, wherein we propose that "energetic rigidity," in which all nontrivial deformations raise the energy of a structure, is a more useful notion of rigidity in practice than two more commonly used rigidity tests: Maxwell-Calladine constraint counting (first-order rigidity) and second-order rigidity. We find that constraint counting robustly predicts energetic rigidity only when the system has no states of self-stress. When the system has states of self-stress, we show that second-order rigidity can imply energetic rigidity in systems that are not considered rigid based on constraint counting, and is even more reliable than shear modulus. We also show that there may be systems for which neither first- nor second-order rigidity imply energetic rigidity. The formalism of energetic rigidity unifies our understanding of mechanical stability and also suggests new avenues for material design.
doi_str_mv 10.1103/PhysRevE.105.025003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2640048466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640048466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-bde04227e46437fe55e4bcd2ddd64cc54db8fe0a0b317085d7a8041d6563adee3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRbKn9BYLs0UvibPYj6c1SqhYKiug5bHYn7Uo-6m4i5N8bae1phuF5Z5iHkFsGMWPAH972Q3jHn3XMQMaQSAB-QaaJSCECkPzy3As5IfMQvgCAKVikLLkmEy6TBWOZnJLHdYN-h50z1Luds64bYrqJ6ZL2jSsH1-xot8fWD7QtaY1mrxtndEVDpwtXjfQNuSp1FXB-qjPy-bT-WL1E29fnzWq5jQwH2UWFRRBJkqJQgqclSomiMDax1iphjBS2yEoEDQVnKWTSpjoDwaySimuLyGfk_rj34NvvHkOX1y4YrCrdYNuHPFFifDYTSo0oP6LGtyF4LPODd7X2Q84g_7OX_9sbBzI_2htTd6cDfVGjPWf-XfFfL_pr8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640048466</pqid></control><display><type>article</type><title>Energetic rigidity. I. A unifying theory of mechanical stability</title><source>American Physical Society Journals</source><creator>Damavandi, Ojan Khatib ; Hagh, Varda F ; Santangelo, Christian D ; Manning, M Lisa</creator><creatorcontrib>Damavandi, Ojan Khatib ; Hagh, Varda F ; Santangelo, Christian D ; Manning, M Lisa</creatorcontrib><description>Rigidity regulates the integrity and function of many physical and biological systems. This is the first of two papers on the origin of rigidity, wherein we propose that "energetic rigidity," in which all nontrivial deformations raise the energy of a structure, is a more useful notion of rigidity in practice than two more commonly used rigidity tests: Maxwell-Calladine constraint counting (first-order rigidity) and second-order rigidity. We find that constraint counting robustly predicts energetic rigidity only when the system has no states of self-stress. When the system has states of self-stress, we show that second-order rigidity can imply energetic rigidity in systems that are not considered rigid based on constraint counting, and is even more reliable than shear modulus. We also show that there may be systems for which neither first- nor second-order rigidity imply energetic rigidity. The formalism of energetic rigidity unifies our understanding of mechanical stability and also suggests new avenues for material design.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.105.025003</identifier><identifier>PMID: 35291185</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2022-02, Vol.105 (2-2), p.025003-025003, Article 025003</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-bde04227e46437fe55e4bcd2ddd64cc54db8fe0a0b317085d7a8041d6563adee3</citedby><cites>FETCH-LOGICAL-c305t-bde04227e46437fe55e4bcd2ddd64cc54db8fe0a0b317085d7a8041d6563adee3</cites><orcidid>0000-0002-1540-648X ; 0000-0002-2148-3289 ; 0000-0002-5313-1608 ; 0000-0001-7682-2324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35291185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Damavandi, Ojan Khatib</creatorcontrib><creatorcontrib>Hagh, Varda F</creatorcontrib><creatorcontrib>Santangelo, Christian D</creatorcontrib><creatorcontrib>Manning, M Lisa</creatorcontrib><title>Energetic rigidity. I. A unifying theory of mechanical stability</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>Rigidity regulates the integrity and function of many physical and biological systems. This is the first of two papers on the origin of rigidity, wherein we propose that "energetic rigidity," in which all nontrivial deformations raise the energy of a structure, is a more useful notion of rigidity in practice than two more commonly used rigidity tests: Maxwell-Calladine constraint counting (first-order rigidity) and second-order rigidity. We find that constraint counting robustly predicts energetic rigidity only when the system has no states of self-stress. When the system has states of self-stress, we show that second-order rigidity can imply energetic rigidity in systems that are not considered rigid based on constraint counting, and is even more reliable than shear modulus. We also show that there may be systems for which neither first- nor second-order rigidity imply energetic rigidity. The formalism of energetic rigidity unifies our understanding of mechanical stability and also suggests new avenues for material design.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRbKn9BYLs0UvibPYj6c1SqhYKiug5bHYn7Uo-6m4i5N8bae1phuF5Z5iHkFsGMWPAH972Q3jHn3XMQMaQSAB-QaaJSCECkPzy3As5IfMQvgCAKVikLLkmEy6TBWOZnJLHdYN-h50z1Luds64bYrqJ6ZL2jSsH1-xot8fWD7QtaY1mrxtndEVDpwtXjfQNuSp1FXB-qjPy-bT-WL1E29fnzWq5jQwH2UWFRRBJkqJQgqclSomiMDax1iphjBS2yEoEDQVnKWTSpjoDwaySimuLyGfk_rj34NvvHkOX1y4YrCrdYNuHPFFifDYTSo0oP6LGtyF4LPODd7X2Q84g_7OX_9sbBzI_2htTd6cDfVGjPWf-XfFfL_pr8g</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Damavandi, Ojan Khatib</creator><creator>Hagh, Varda F</creator><creator>Santangelo, Christian D</creator><creator>Manning, M Lisa</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1540-648X</orcidid><orcidid>https://orcid.org/0000-0002-2148-3289</orcidid><orcidid>https://orcid.org/0000-0002-5313-1608</orcidid><orcidid>https://orcid.org/0000-0001-7682-2324</orcidid></search><sort><creationdate>20220201</creationdate><title>Energetic rigidity. I. A unifying theory of mechanical stability</title><author>Damavandi, Ojan Khatib ; Hagh, Varda F ; Santangelo, Christian D ; Manning, M Lisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-bde04227e46437fe55e4bcd2ddd64cc54db8fe0a0b317085d7a8041d6563adee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Damavandi, Ojan Khatib</creatorcontrib><creatorcontrib>Hagh, Varda F</creatorcontrib><creatorcontrib>Santangelo, Christian D</creatorcontrib><creatorcontrib>Manning, M Lisa</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Damavandi, Ojan Khatib</au><au>Hagh, Varda F</au><au>Santangelo, Christian D</au><au>Manning, M Lisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energetic rigidity. I. A unifying theory of mechanical stability</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>105</volume><issue>2-2</issue><spage>025003</spage><epage>025003</epage><pages>025003-025003</pages><artnum>025003</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>Rigidity regulates the integrity and function of many physical and biological systems. This is the first of two papers on the origin of rigidity, wherein we propose that "energetic rigidity," in which all nontrivial deformations raise the energy of a structure, is a more useful notion of rigidity in practice than two more commonly used rigidity tests: Maxwell-Calladine constraint counting (first-order rigidity) and second-order rigidity. We find that constraint counting robustly predicts energetic rigidity only when the system has no states of self-stress. When the system has states of self-stress, we show that second-order rigidity can imply energetic rigidity in systems that are not considered rigid based on constraint counting, and is even more reliable than shear modulus. We also show that there may be systems for which neither first- nor second-order rigidity imply energetic rigidity. The formalism of energetic rigidity unifies our understanding of mechanical stability and also suggests new avenues for material design.</abstract><cop>United States</cop><pmid>35291185</pmid><doi>10.1103/PhysRevE.105.025003</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1540-648X</orcidid><orcidid>https://orcid.org/0000-0002-2148-3289</orcidid><orcidid>https://orcid.org/0000-0002-5313-1608</orcidid><orcidid>https://orcid.org/0000-0001-7682-2324</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2022-02, Vol.105 (2-2), p.025003-025003, Article 025003
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_2640048466
source American Physical Society Journals
title Energetic rigidity. I. A unifying theory of mechanical stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energetic%20rigidity.%20I.%20A%20unifying%20theory%20of%20mechanical%20stability&rft.jtitle=Physical%20review.%20E&rft.au=Damavandi,%20Ojan%20Khatib&rft.date=2022-02-01&rft.volume=105&rft.issue=2-2&rft.spage=025003&rft.epage=025003&rft.pages=025003-025003&rft.artnum=025003&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.105.025003&rft_dat=%3Cproquest_cross%3E2640048466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640048466&rft_id=info:pmid/35291185&rfr_iscdi=true