Length and area generating functions for height-restricted Motzkin meanders
We derive the length and area generating function of planar height-restricted forward-moving discrete paths of increments ±1 or 0 with arbitrary starting and ending points, the so-called Motzkin meanders, and the more general length-area generating functions for Motzkin paths with markers monitoring...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2022-02, Vol.105 (2-1), p.024102-024102, Article 024102 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 024102 |
---|---|
container_issue | 2-1 |
container_start_page | 024102 |
container_title | Physical review. E |
container_volume | 105 |
creator | Polychronakos, Alexios P |
description | We derive the length and area generating function of planar height-restricted forward-moving discrete paths of increments ±1 or 0 with arbitrary starting and ending points, the so-called Motzkin meanders, and the more general length-area generating functions for Motzkin paths with markers monitoring the number of passages from the two height boundaries ("floor" and "ceiling") and the time spent there. The results are obtained by embedding Motzkin paths in a two-step anisotropic Dyck path process and using propagator, exclusion statistics, and bosonization techniques. We also present a cluster expansion of the logarithm of the generating functions that makes their polynomial structure explicit. These results are relevant to the derivation of statistical mechanical properties of physical systems such as polymers, vesicles, and solid-on-solid interfaces. |
doi_str_mv | 10.1103/PhysRevE.105.024102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2640047897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640047897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-db067ef5506bdd273a7bfe37625c69c5732794e197913ed41ee61d945e93f5e43</originalsourceid><addsrcrecordid>eNo9kElPwzAQhS0EolXpL0BCPnJJ8RrXR1SVRRSBEJwjJ54s0DjFdpDKryeoy2lGo_dm3nwIXVIyo5Twm9d6G97gZzmjRM4IE5SwEzRmQpGEEMlPj72QIzQN4ZMQQlOiFWXnaMQl05TK-Rg9rcBVscbGWWw8GFyBA29i4ypc9q6ITecCLjuPa2iqOiYeQvRNEcHi5y7-fjUOtzC4wYcLdFaadYDpvk7Qx93yffGQrF7uHxe3q6TgRMbE5iRVUEpJ0txaprhReQlcpUwWqS6k4kxpAVQrTTlYQQFSarWQoHkpQfAJut7t3fjuux_yZG0TClivjYOuDxlLxfC3mms1SPlOWvguBA9ltvFNa_w2oyT7B5kdQA4Dme1ADq6r_YE-b8EePQds_A8fK3AI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640047897</pqid></control><display><type>article</type><title>Length and area generating functions for height-restricted Motzkin meanders</title><source>American Physical Society Journals</source><creator>Polychronakos, Alexios P</creator><creatorcontrib>Polychronakos, Alexios P</creatorcontrib><description>We derive the length and area generating function of planar height-restricted forward-moving discrete paths of increments ±1 or 0 with arbitrary starting and ending points, the so-called Motzkin meanders, and the more general length-area generating functions for Motzkin paths with markers monitoring the number of passages from the two height boundaries ("floor" and "ceiling") and the time spent there. The results are obtained by embedding Motzkin paths in a two-step anisotropic Dyck path process and using propagator, exclusion statistics, and bosonization techniques. We also present a cluster expansion of the logarithm of the generating functions that makes their polynomial structure explicit. These results are relevant to the derivation of statistical mechanical properties of physical systems such as polymers, vesicles, and solid-on-solid interfaces.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.105.024102</identifier><identifier>PMID: 35291158</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2022-02, Vol.105 (2-1), p.024102-024102, Article 024102</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-db067ef5506bdd273a7bfe37625c69c5732794e197913ed41ee61d945e93f5e43</citedby><cites>FETCH-LOGICAL-c305t-db067ef5506bdd273a7bfe37625c69c5732794e197913ed41ee61d945e93f5e43</cites><orcidid>0000-0002-0443-2797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2865,2866,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35291158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Polychronakos, Alexios P</creatorcontrib><title>Length and area generating functions for height-restricted Motzkin meanders</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>We derive the length and area generating function of planar height-restricted forward-moving discrete paths of increments ±1 or 0 with arbitrary starting and ending points, the so-called Motzkin meanders, and the more general length-area generating functions for Motzkin paths with markers monitoring the number of passages from the two height boundaries ("floor" and "ceiling") and the time spent there. The results are obtained by embedding Motzkin paths in a two-step anisotropic Dyck path process and using propagator, exclusion statistics, and bosonization techniques. We also present a cluster expansion of the logarithm of the generating functions that makes their polynomial structure explicit. These results are relevant to the derivation of statistical mechanical properties of physical systems such as polymers, vesicles, and solid-on-solid interfaces.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kElPwzAQhS0EolXpL0BCPnJJ8RrXR1SVRRSBEJwjJ54s0DjFdpDKryeoy2lGo_dm3nwIXVIyo5Twm9d6G97gZzmjRM4IE5SwEzRmQpGEEMlPj72QIzQN4ZMQQlOiFWXnaMQl05TK-Rg9rcBVscbGWWw8GFyBA29i4ypc9q6ITecCLjuPa2iqOiYeQvRNEcHi5y7-fjUOtzC4wYcLdFaadYDpvk7Qx93yffGQrF7uHxe3q6TgRMbE5iRVUEpJ0txaprhReQlcpUwWqS6k4kxpAVQrTTlYQQFSarWQoHkpQfAJut7t3fjuux_yZG0TClivjYOuDxlLxfC3mms1SPlOWvguBA9ltvFNa_w2oyT7B5kdQA4Dme1ADq6r_YE-b8EePQds_A8fK3AI</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Polychronakos, Alexios P</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0443-2797</orcidid></search><sort><creationdate>20220201</creationdate><title>Length and area generating functions for height-restricted Motzkin meanders</title><author>Polychronakos, Alexios P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-db067ef5506bdd273a7bfe37625c69c5732794e197913ed41ee61d945e93f5e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polychronakos, Alexios P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polychronakos, Alexios P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Length and area generating functions for height-restricted Motzkin meanders</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>105</volume><issue>2-1</issue><spage>024102</spage><epage>024102</epage><pages>024102-024102</pages><artnum>024102</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>We derive the length and area generating function of planar height-restricted forward-moving discrete paths of increments ±1 or 0 with arbitrary starting and ending points, the so-called Motzkin meanders, and the more general length-area generating functions for Motzkin paths with markers monitoring the number of passages from the two height boundaries ("floor" and "ceiling") and the time spent there. The results are obtained by embedding Motzkin paths in a two-step anisotropic Dyck path process and using propagator, exclusion statistics, and bosonization techniques. We also present a cluster expansion of the logarithm of the generating functions that makes their polynomial structure explicit. These results are relevant to the derivation of statistical mechanical properties of physical systems such as polymers, vesicles, and solid-on-solid interfaces.</abstract><cop>United States</cop><pmid>35291158</pmid><doi>10.1103/PhysRevE.105.024102</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0443-2797</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0045 |
ispartof | Physical review. E, 2022-02, Vol.105 (2-1), p.024102-024102, Article 024102 |
issn | 2470-0045 2470-0053 |
language | eng |
recordid | cdi_proquest_miscellaneous_2640047897 |
source | American Physical Society Journals |
title | Length and area generating functions for height-restricted Motzkin meanders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Length%20and%20area%20generating%20functions%20for%20height-restricted%20Motzkin%20meanders&rft.jtitle=Physical%20review.%20E&rft.au=Polychronakos,%20Alexios%20P&rft.date=2022-02-01&rft.volume=105&rft.issue=2-1&rft.spage=024102&rft.epage=024102&rft.pages=024102-024102&rft.artnum=024102&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.105.024102&rft_dat=%3Cproquest_cross%3E2640047897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640047897&rft_id=info:pmid/35291158&rfr_iscdi=true |