Optimizing thermodynamic cycles with two finite-sized reservoirs

We study the nonequilibrium thermodynamics of a heat engine operating between two finite-sized reservoirs with well-defined temperatures. Within the linear response regime, it is found that the uniform temperature of the two reservoirs at final time τ is bounded from below by the entropy production...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2022-02, Vol.105 (2), p.L022101-L022101, Article L022101
Hauptverfasser: Yuan, Hong, Ma, Yu-Han, Sun, C P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page L022101
container_issue 2
container_start_page L022101
container_title Physical review. E
container_volume 105
creator Yuan, Hong
Ma, Yu-Han
Sun, C P
description We study the nonequilibrium thermodynamics of a heat engine operating between two finite-sized reservoirs with well-defined temperatures. Within the linear response regime, it is found that the uniform temperature of the two reservoirs at final time τ is bounded from below by the entropy production σ_{min}∝1/τ. We discover a general power-efficiency tradeoff depending on the ratio of heat capacities (γ) of the reservoirs for the engine, and a universal efficiency at maximum average power of the engine for arbitrary γ is obtained. For practical purposes, the operation protocol of an ideal gas heat engine to achieve the optimal performance associated with σ_{min} is demonstrated. Our findings can be used to develop a general optimization scenario for thermodynamic cycles with finite-sized reservoirs in real-world circumstances.
doi_str_mv 10.1103/PhysRevE.105.L022101
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2640047142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640047142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-d23a9ab82fd57b5a8f86f956eae5f996904464f5f8f438326e7a311543b5bc4e3</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRbKn9ByJ59CVx9pbLm1LqBQoV0edlk8zalVzqbtqS_nojvTzNMJwzc-Yj5JZCRCnwh_dV7z9wO48oyGgBjFGgF2TMRAIhgOSX517IEZl6_wMANIYsoeyajLhkGaWSjcnjct3Z2u5t8x10K3R1W_aNrm0RFH1RoQ92tlsF3a4NjG1sh6G3eywDhx7dtrXO35AroyuP02OdkK_n-efsNVwsX95mT4uw4JB0Ycm4znSeMlPKJJc6NWlsMhmjRmmyLM5AiFgYaVIjeMpZjInmQ0TBc5kXAvmE3B_2rl37u0Hfqdr6AqtKN9huvGKxGJ5NqGCDVBykhWu9d2jU2tlau15RUP_41AnfMJDqiG-w3R0vbPIay7PpBIv_ATI1bTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640047142</pqid></control><display><type>article</type><title>Optimizing thermodynamic cycles with two finite-sized reservoirs</title><source>American Physical Society Journals</source><creator>Yuan, Hong ; Ma, Yu-Han ; Sun, C P</creator><creatorcontrib>Yuan, Hong ; Ma, Yu-Han ; Sun, C P</creatorcontrib><description>We study the nonequilibrium thermodynamics of a heat engine operating between two finite-sized reservoirs with well-defined temperatures. Within the linear response regime, it is found that the uniform temperature of the two reservoirs at final time τ is bounded from below by the entropy production σ_{min}∝1/τ. We discover a general power-efficiency tradeoff depending on the ratio of heat capacities (γ) of the reservoirs for the engine, and a universal efficiency at maximum average power of the engine for arbitrary γ is obtained. For practical purposes, the operation protocol of an ideal gas heat engine to achieve the optimal performance associated with σ_{min} is demonstrated. Our findings can be used to develop a general optimization scenario for thermodynamic cycles with finite-sized reservoirs in real-world circumstances.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.105.L022101</identifier><identifier>PMID: 35291152</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2022-02, Vol.105 (2), p.L022101-L022101, Article L022101</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-d23a9ab82fd57b5a8f86f956eae5f996904464f5f8f438326e7a311543b5bc4e3</citedby><cites>FETCH-LOGICAL-c307t-d23a9ab82fd57b5a8f86f956eae5f996904464f5f8f438326e7a311543b5bc4e3</cites><orcidid>0000-0001-9768-9171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35291152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Hong</creatorcontrib><creatorcontrib>Ma, Yu-Han</creatorcontrib><creatorcontrib>Sun, C P</creatorcontrib><title>Optimizing thermodynamic cycles with two finite-sized reservoirs</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>We study the nonequilibrium thermodynamics of a heat engine operating between two finite-sized reservoirs with well-defined temperatures. Within the linear response regime, it is found that the uniform temperature of the two reservoirs at final time τ is bounded from below by the entropy production σ_{min}∝1/τ. We discover a general power-efficiency tradeoff depending on the ratio of heat capacities (γ) of the reservoirs for the engine, and a universal efficiency at maximum average power of the engine for arbitrary γ is obtained. For practical purposes, the operation protocol of an ideal gas heat engine to achieve the optimal performance associated with σ_{min} is demonstrated. Our findings can be used to develop a general optimization scenario for thermodynamic cycles with finite-sized reservoirs in real-world circumstances.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLw0AQhRdRbKn9ByJ59CVx9pbLm1LqBQoV0edlk8zalVzqbtqS_nojvTzNMJwzc-Yj5JZCRCnwh_dV7z9wO48oyGgBjFGgF2TMRAIhgOSX517IEZl6_wMANIYsoeyajLhkGaWSjcnjct3Z2u5t8x10K3R1W_aNrm0RFH1RoQ92tlsF3a4NjG1sh6G3eywDhx7dtrXO35AroyuP02OdkK_n-efsNVwsX95mT4uw4JB0Ycm4znSeMlPKJJc6NWlsMhmjRmmyLM5AiFgYaVIjeMpZjInmQ0TBc5kXAvmE3B_2rl37u0Hfqdr6AqtKN9huvGKxGJ5NqGCDVBykhWu9d2jU2tlau15RUP_41AnfMJDqiG-w3R0vbPIay7PpBIv_ATI1bTI</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Yuan, Hong</creator><creator>Ma, Yu-Han</creator><creator>Sun, C P</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9768-9171</orcidid></search><sort><creationdate>20220201</creationdate><title>Optimizing thermodynamic cycles with two finite-sized reservoirs</title><author>Yuan, Hong ; Ma, Yu-Han ; Sun, C P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-d23a9ab82fd57b5a8f86f956eae5f996904464f5f8f438326e7a311543b5bc4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Hong</creatorcontrib><creatorcontrib>Ma, Yu-Han</creatorcontrib><creatorcontrib>Sun, C P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Hong</au><au>Ma, Yu-Han</au><au>Sun, C P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing thermodynamic cycles with two finite-sized reservoirs</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>105</volume><issue>2</issue><spage>L022101</spage><epage>L022101</epage><pages>L022101-L022101</pages><artnum>L022101</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>We study the nonequilibrium thermodynamics of a heat engine operating between two finite-sized reservoirs with well-defined temperatures. Within the linear response regime, it is found that the uniform temperature of the two reservoirs at final time τ is bounded from below by the entropy production σ_{min}∝1/τ. We discover a general power-efficiency tradeoff depending on the ratio of heat capacities (γ) of the reservoirs for the engine, and a universal efficiency at maximum average power of the engine for arbitrary γ is obtained. For practical purposes, the operation protocol of an ideal gas heat engine to achieve the optimal performance associated with σ_{min} is demonstrated. Our findings can be used to develop a general optimization scenario for thermodynamic cycles with finite-sized reservoirs in real-world circumstances.</abstract><cop>United States</cop><pmid>35291152</pmid><doi>10.1103/PhysRevE.105.L022101</doi><orcidid>https://orcid.org/0000-0001-9768-9171</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2022-02, Vol.105 (2), p.L022101-L022101, Article L022101
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_2640047142
source American Physical Society Journals
title Optimizing thermodynamic cycles with two finite-sized reservoirs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20thermodynamic%20cycles%20with%20two%20finite-sized%20reservoirs&rft.jtitle=Physical%20review.%20E&rft.au=Yuan,%20Hong&rft.date=2022-02-01&rft.volume=105&rft.issue=2&rft.spage=L022101&rft.epage=L022101&rft.pages=L022101-L022101&rft.artnum=L022101&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.105.L022101&rft_dat=%3Cproquest_cross%3E2640047142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640047142&rft_id=info:pmid/35291152&rfr_iscdi=true