The in vitro synthesis of cellulose – A mini-review

The implementation of cellulose as a green alternative to classical polymers sparks research on the synthesis of defined derivatives of this biopolymer for various high-tech applications. Apart from the scientific challenge, the in vitro synthesis of cellulose using a bottom-up approach provides spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2022-06, Vol.285, p.119222-119222, Article 119222
Hauptverfasser: Lehrhofer, Anna F., Goto, Takaaki, Kawada, Toshinari, Rosenau, Thomas, Hettegger, Hubert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119222
container_issue
container_start_page 119222
container_title Carbohydrate polymers
container_volume 285
creator Lehrhofer, Anna F.
Goto, Takaaki
Kawada, Toshinari
Rosenau, Thomas
Hettegger, Hubert
description The implementation of cellulose as a green alternative to classical polymers sparks research on the synthesis of defined derivatives of this biopolymer for various high-tech applications. Apart from the scientific challenge, the in vitro synthesis of cellulose using a bottom-up approach provides specimens with absolutely accurate substituent patterns and degrees of polymerization, not accessible from native cellulose. Synthetic cellulose exhibiting a comparably high degree of polymerization (DP) was obtained starting from cellobiose by biocatalytic synthesis implementing cellulase. Cationic ring-opening polymerization has been established in the last two decades, representing an excellent means of precise modification with regards to regio- and stereoselective substitution. This method rendered isotopically enriched cellulose as well as enantiomers of native cellulose (“l-cellulose”, “d,l-cellulose”) accessible. In this review, techniques for in vitro cellulose synthesis are summarized and critically compared – with a special focus on more recent developments. This is complemented by a brief overview of alternative enzymatic approaches. [Display omitted]
doi_str_mv 10.1016/j.carbpol.2022.119222
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2639223584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861722001266</els_id><sourcerecordid>2639223584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-f2c68728b3205a8dfe5c2153870501dfdc81edceb8259ccbaab2c70ef9fa74ca3</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EoqVwBJCXbBJsJ06cFaoq_qRKbMracpyx6iqJi50UdccduCEnIVUKW2Yzm_fmzfsQuqYkpoRmd5tYK19uXR0zwlhMacEYO0FTKvIiokmanqIpoWkaiYzmE3QRwoYMk1FyjiYJZyIXnE0RX60B2xbvbOcdDvu2W0OwATuDNdR1X7sA-PvzC89xY1sbedhZ-LhEZ0bVAa6Oe4beHh9Wi-do-fr0spgvI51S1kWG6UzkTJQJI1yJygDXjPJE5IQTWplKCwqVhlIwXmhdKlUynRMwhVF5qlUyQ7fj3a137z2ETjY2HP5SLbg-SJYlQ-2Ei3SQ8lGqvQvBg5Fbbxvl95ISeSAmN_JITB6IyZHY4Ls5RvRlA9Wf6xfRILgfBTAUHcp7GbSFVkNlPehOVs7-E_EDCDR_ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639223584</pqid></control><display><type>article</type><title>The in vitro synthesis of cellulose – A mini-review</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Lehrhofer, Anna F. ; Goto, Takaaki ; Kawada, Toshinari ; Rosenau, Thomas ; Hettegger, Hubert</creator><creatorcontrib>Lehrhofer, Anna F. ; Goto, Takaaki ; Kawada, Toshinari ; Rosenau, Thomas ; Hettegger, Hubert</creatorcontrib><description>The implementation of cellulose as a green alternative to classical polymers sparks research on the synthesis of defined derivatives of this biopolymer for various high-tech applications. Apart from the scientific challenge, the in vitro synthesis of cellulose using a bottom-up approach provides specimens with absolutely accurate substituent patterns and degrees of polymerization, not accessible from native cellulose. Synthetic cellulose exhibiting a comparably high degree of polymerization (DP) was obtained starting from cellobiose by biocatalytic synthesis implementing cellulase. Cationic ring-opening polymerization has been established in the last two decades, representing an excellent means of precise modification with regards to regio- and stereoselective substitution. This method rendered isotopically enriched cellulose as well as enantiomers of native cellulose (“l-cellulose”, “d,l-cellulose”) accessible. In this review, techniques for in vitro cellulose synthesis are summarized and critically compared – with a special focus on more recent developments. This is complemented by a brief overview of alternative enzymatic approaches. [Display omitted]</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2022.119222</identifier><identifier>PMID: 35287852</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Anhydroglucose ; Biopolymer ; Cellobiose ; Cellulase ; Cellulose ; In vitro synthesis ; Polymers ; Polysaccharide ; Ring-opening polymerization ; Stereoisomerism</subject><ispartof>Carbohydrate polymers, 2022-06, Vol.285, p.119222-119222, Article 119222</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-f2c68728b3205a8dfe5c2153870501dfdc81edceb8259ccbaab2c70ef9fa74ca3</citedby><cites>FETCH-LOGICAL-c412t-f2c68728b3205a8dfe5c2153870501dfdc81edceb8259ccbaab2c70ef9fa74ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbpol.2022.119222$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35287852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lehrhofer, Anna F.</creatorcontrib><creatorcontrib>Goto, Takaaki</creatorcontrib><creatorcontrib>Kawada, Toshinari</creatorcontrib><creatorcontrib>Rosenau, Thomas</creatorcontrib><creatorcontrib>Hettegger, Hubert</creatorcontrib><title>The in vitro synthesis of cellulose – A mini-review</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>The implementation of cellulose as a green alternative to classical polymers sparks research on the synthesis of defined derivatives of this biopolymer for various high-tech applications. Apart from the scientific challenge, the in vitro synthesis of cellulose using a bottom-up approach provides specimens with absolutely accurate substituent patterns and degrees of polymerization, not accessible from native cellulose. Synthetic cellulose exhibiting a comparably high degree of polymerization (DP) was obtained starting from cellobiose by biocatalytic synthesis implementing cellulase. Cationic ring-opening polymerization has been established in the last two decades, representing an excellent means of precise modification with regards to regio- and stereoselective substitution. This method rendered isotopically enriched cellulose as well as enantiomers of native cellulose (“l-cellulose”, “d,l-cellulose”) accessible. In this review, techniques for in vitro cellulose synthesis are summarized and critically compared – with a special focus on more recent developments. This is complemented by a brief overview of alternative enzymatic approaches. [Display omitted]</description><subject>Anhydroglucose</subject><subject>Biopolymer</subject><subject>Cellobiose</subject><subject>Cellulase</subject><subject>Cellulose</subject><subject>In vitro synthesis</subject><subject>Polymers</subject><subject>Polysaccharide</subject><subject>Ring-opening polymerization</subject><subject>Stereoisomerism</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1OwzAQhS0EoqVwBJCXbBJsJ06cFaoq_qRKbMracpyx6iqJi50UdccduCEnIVUKW2Yzm_fmzfsQuqYkpoRmd5tYK19uXR0zwlhMacEYO0FTKvIiokmanqIpoWkaiYzmE3QRwoYMk1FyjiYJZyIXnE0RX60B2xbvbOcdDvu2W0OwATuDNdR1X7sA-PvzC89xY1sbedhZ-LhEZ0bVAa6Oe4beHh9Wi-do-fr0spgvI51S1kWG6UzkTJQJI1yJygDXjPJE5IQTWplKCwqVhlIwXmhdKlUynRMwhVF5qlUyQ7fj3a137z2ETjY2HP5SLbg-SJYlQ-2Ei3SQ8lGqvQvBg5Fbbxvl95ISeSAmN_JITB6IyZHY4Ls5RvRlA9Wf6xfRILgfBTAUHcp7GbSFVkNlPehOVs7-E_EDCDR_ag</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Lehrhofer, Anna F.</creator><creator>Goto, Takaaki</creator><creator>Kawada, Toshinari</creator><creator>Rosenau, Thomas</creator><creator>Hettegger, Hubert</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220601</creationdate><title>The in vitro synthesis of cellulose – A mini-review</title><author>Lehrhofer, Anna F. ; Goto, Takaaki ; Kawada, Toshinari ; Rosenau, Thomas ; Hettegger, Hubert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-f2c68728b3205a8dfe5c2153870501dfdc81edceb8259ccbaab2c70ef9fa74ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anhydroglucose</topic><topic>Biopolymer</topic><topic>Cellobiose</topic><topic>Cellulase</topic><topic>Cellulose</topic><topic>In vitro synthesis</topic><topic>Polymers</topic><topic>Polysaccharide</topic><topic>Ring-opening polymerization</topic><topic>Stereoisomerism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lehrhofer, Anna F.</creatorcontrib><creatorcontrib>Goto, Takaaki</creatorcontrib><creatorcontrib>Kawada, Toshinari</creatorcontrib><creatorcontrib>Rosenau, Thomas</creatorcontrib><creatorcontrib>Hettegger, Hubert</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lehrhofer, Anna F.</au><au>Goto, Takaaki</au><au>Kawada, Toshinari</au><au>Rosenau, Thomas</au><au>Hettegger, Hubert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The in vitro synthesis of cellulose – A mini-review</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>285</volume><spage>119222</spage><epage>119222</epage><pages>119222-119222</pages><artnum>119222</artnum><issn>0144-8617</issn><eissn>1879-1344</eissn><abstract>The implementation of cellulose as a green alternative to classical polymers sparks research on the synthesis of defined derivatives of this biopolymer for various high-tech applications. Apart from the scientific challenge, the in vitro synthesis of cellulose using a bottom-up approach provides specimens with absolutely accurate substituent patterns and degrees of polymerization, not accessible from native cellulose. Synthetic cellulose exhibiting a comparably high degree of polymerization (DP) was obtained starting from cellobiose by biocatalytic synthesis implementing cellulase. Cationic ring-opening polymerization has been established in the last two decades, representing an excellent means of precise modification with regards to regio- and stereoselective substitution. This method rendered isotopically enriched cellulose as well as enantiomers of native cellulose (“l-cellulose”, “d,l-cellulose”) accessible. In this review, techniques for in vitro cellulose synthesis are summarized and critically compared – with a special focus on more recent developments. This is complemented by a brief overview of alternative enzymatic approaches. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35287852</pmid><doi>10.1016/j.carbpol.2022.119222</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2022-06, Vol.285, p.119222-119222, Article 119222
issn 0144-8617
1879-1344
language eng
recordid cdi_proquest_miscellaneous_2639223584
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Anhydroglucose
Biopolymer
Cellobiose
Cellulase
Cellulose
In vitro synthesis
Polymers
Polysaccharide
Ring-opening polymerization
Stereoisomerism
title The in vitro synthesis of cellulose – A mini-review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T23%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20in%20vitro%20synthesis%20of%20cellulose%20%E2%80%93%20A%20mini-review&rft.jtitle=Carbohydrate%20polymers&rft.au=Lehrhofer,%20Anna%20F.&rft.date=2022-06-01&rft.volume=285&rft.spage=119222&rft.epage=119222&rft.pages=119222-119222&rft.artnum=119222&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2022.119222&rft_dat=%3Cproquest_cross%3E2639223584%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639223584&rft_id=info:pmid/35287852&rft_els_id=S0144861722001266&rfr_iscdi=true