Dopaminergic Correlates of Regional Cerebral Blood Flow in Parkinsonian Disorders

Background Cerebral blood flow (CBF) and dopamine transporter (DAT) images are clinically used for the differential diagnosis of parkinsonian disorders. Objectives This study aimed to examine the correlation of CBF with striatal DAT in patients with Parkinson's disease (PD) and atypical parkins...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Movement disorders 2022-06, Vol.37 (6), p.1235-1244
Hauptverfasser: Nakano, Yoshikazu, Hirano, Shigeki, Kojima, Kazuho, Li, Honglinag, Sakurai, Toru, Suzuki, Masahide, Tai, Hong, Furukawa, Shogo, Sugiyama, Atsuhiko, Yamanaka, Yoshitaka, Yamamoto, Tatsuya, Iimori, Takashi, Yokota, Hajime, Mukai, Hiroki, Horikoshi, Takuro, Uno, Takashi, Kuwabara, Satoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1244
container_issue 6
container_start_page 1235
container_title Movement disorders
container_volume 37
creator Nakano, Yoshikazu
Hirano, Shigeki
Kojima, Kazuho
Li, Honglinag
Sakurai, Toru
Suzuki, Masahide
Tai, Hong
Furukawa, Shogo
Sugiyama, Atsuhiko
Yamanaka, Yoshitaka
Yamamoto, Tatsuya
Iimori, Takashi
Yokota, Hajime
Mukai, Hiroki
Horikoshi, Takuro
Uno, Takashi
Kuwabara, Satoshi
description Background Cerebral blood flow (CBF) and dopamine transporter (DAT) images are clinically used for the differential diagnosis of parkinsonian disorders. Objectives This study aimed to examine the correlation of CBF with striatal DAT in patients with Parkinson's disease (PD) and atypical parkinsonian syndromes (APS) and evaluate the diagnostic power of DAT‐correlated CBF in PD through machine learning with each imaging modality alone or in combination. Methods Fifty‐eight patients with PD and 71 with APS (24 with multiple system atrophy, 21 with progressive supranuclear palsy, and 26 with corticobasal syndrome) underwent 123I‐IMP and 123I‐FP‐CIT single‐photon emission computed tomography. Multiple regression analyses for CBF and striatal DAT binding were conducted on each group. PD probability was predicted by machine learning and receiver operating characteristic curves. Results The PD group showed more affected striatal DAT binding positively correlated with the ipsilateral prefrontal perfusion and negatively with the bilateral cerebellar perfusion. In corticobasal syndrome, striatal DAT binding positively correlated with the ipsilateral prefrontal perfusion and negatively with the contralateral precentral perfusion. In Richardson's syndrome, striatal DAT binding positively correlated with perfusion in the ipsilateral precentral cortex and basal ganglia. Machine learning showed that the combination of CBF and DAT was better for delineating PD from APS (area under the curve [AUC] = 0.87) than either CBF (0.67) or DAT (0.50) alone. Conclusions In PD and four‐repeat tauopathy, prefrontal perfusion was related to ipsilateral nigrostriatal dopaminergic function. This dual‐tracer frontostriatal relationship may be effectively used as a diagnostic tool for delineating PD from APS. © 2022 International Parkinson and Movement Disorder Society Analyses of 123I‐IMP and 123I‐FP‐CIT single‐photon emission computed tomography showed that striatal dopamine transporter correlated with frontal perfusion in Parkinson's disease, Richardson's syndrome, and corticobasal syndrome. The results contributed to delineating Parkinson's disease from atypical parkinsonian syndromes by machine learning (area under the receiver operating characteristics curve = 0.87).
doi_str_mv 10.1002/mds.28981
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2638940728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676764802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3531-cec3a196c5a56c17fdfb2446a87b840c792263322909363839a5bb8363bf90543</originalsourceid><addsrcrecordid>eNp10E1PwyAYB3BiNG5OD34BQ-JFD914KS09aufUZMb3M6GULsy2TFiz7NvL3PRgYjjwHH78w_MH4BSjIUaIjJrSDwnPON4Dfcwojjhh6T7oI85ZRDFnPXDk_RwhjBlODkGPMsIZYqgPnsd2IRvTajczCubWOV3LpfbQVvBFz4xtZQ1z7XThwnBdW1vCSW1X0LTwSboP03rbGtnCsfHWldr5Y3BQydrrk909AO-Tm7f8Lpo-3t7nV9NI0c0XlVZU4ixRTLJE4bQqq4LEcSJ5WvAYqTQjJKGUkAxlNKGcZpIVBQ9jUWWIxXQALra5C2c_O-2XojFe6bqWrbadF-E1z2KUEh7o-R86t50Lm21UGk7MEQnqcquUs947XYmFM410a4GR2PQsQs_iu-dgz3aJXdHo8lf-FBvAaAtWptbr_5PEw_h1G_kFLh2FCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676764802</pqid></control><display><type>article</type><title>Dopaminergic Correlates of Regional Cerebral Blood Flow in Parkinsonian Disorders</title><source>Access via Wiley Online Library</source><creator>Nakano, Yoshikazu ; Hirano, Shigeki ; Kojima, Kazuho ; Li, Honglinag ; Sakurai, Toru ; Suzuki, Masahide ; Tai, Hong ; Furukawa, Shogo ; Sugiyama, Atsuhiko ; Yamanaka, Yoshitaka ; Yamamoto, Tatsuya ; Iimori, Takashi ; Yokota, Hajime ; Mukai, Hiroki ; Horikoshi, Takuro ; Uno, Takashi ; Kuwabara, Satoshi</creator><creatorcontrib>Nakano, Yoshikazu ; Hirano, Shigeki ; Kojima, Kazuho ; Li, Honglinag ; Sakurai, Toru ; Suzuki, Masahide ; Tai, Hong ; Furukawa, Shogo ; Sugiyama, Atsuhiko ; Yamanaka, Yoshitaka ; Yamamoto, Tatsuya ; Iimori, Takashi ; Yokota, Hajime ; Mukai, Hiroki ; Horikoshi, Takuro ; Uno, Takashi ; Kuwabara, Satoshi</creatorcontrib><description>Background Cerebral blood flow (CBF) and dopamine transporter (DAT) images are clinically used for the differential diagnosis of parkinsonian disorders. Objectives This study aimed to examine the correlation of CBF with striatal DAT in patients with Parkinson's disease (PD) and atypical parkinsonian syndromes (APS) and evaluate the diagnostic power of DAT‐correlated CBF in PD through machine learning with each imaging modality alone or in combination. Methods Fifty‐eight patients with PD and 71 with APS (24 with multiple system atrophy, 21 with progressive supranuclear palsy, and 26 with corticobasal syndrome) underwent 123I‐IMP and 123I‐FP‐CIT single‐photon emission computed tomography. Multiple regression analyses for CBF and striatal DAT binding were conducted on each group. PD probability was predicted by machine learning and receiver operating characteristic curves. Results The PD group showed more affected striatal DAT binding positively correlated with the ipsilateral prefrontal perfusion and negatively with the bilateral cerebellar perfusion. In corticobasal syndrome, striatal DAT binding positively correlated with the ipsilateral prefrontal perfusion and negatively with the contralateral precentral perfusion. In Richardson's syndrome, striatal DAT binding positively correlated with perfusion in the ipsilateral precentral cortex and basal ganglia. Machine learning showed that the combination of CBF and DAT was better for delineating PD from APS (area under the curve [AUC] = 0.87) than either CBF (0.67) or DAT (0.50) alone. Conclusions In PD and four‐repeat tauopathy, prefrontal perfusion was related to ipsilateral nigrostriatal dopaminergic function. This dual‐tracer frontostriatal relationship may be effectively used as a diagnostic tool for delineating PD from APS. © 2022 International Parkinson and Movement Disorder Society Analyses of 123I‐IMP and 123I‐FP‐CIT single‐photon emission computed tomography showed that striatal dopamine transporter correlated with frontal perfusion in Parkinson's disease, Richardson's syndrome, and corticobasal syndrome. The results contributed to delineating Parkinson's disease from atypical parkinsonian syndromes by machine learning (area under the receiver operating characteristics curve = 0.87).</description><identifier>ISSN: 0885-3185</identifier><identifier>EISSN: 1531-8257</identifier><identifier>DOI: 10.1002/mds.28981</identifier><identifier>PMID: 35285050</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Atrophy ; Basal ganglia ; Blood flow ; Brain diseases ; Central nervous system diseases ; Cerebellum ; Cerebral blood flow ; Computed tomography ; Differential diagnosis ; Dopamine receptors ; Dopamine transporter ; Learning algorithms ; Machine learning ; Movement disorders ; Neostriatum ; Neurodegenerative diseases ; Neuroimaging ; Paralysis ; Parkinson's disease ; parkinsonian disorders ; Perfusion ; Progressive supranuclear palsy ; single‐photon emission computed tomography ; Tau protein</subject><ispartof>Movement disorders, 2022-06, Vol.37 (6), p.1235-1244</ispartof><rights>2022 International Parkinson and Movement Disorder Society</rights><rights>2022 International Parkinson and Movement Disorder Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3531-cec3a196c5a56c17fdfb2446a87b840c792263322909363839a5bb8363bf90543</citedby><cites>FETCH-LOGICAL-c3531-cec3a196c5a56c17fdfb2446a87b840c792263322909363839a5bb8363bf90543</cites><orcidid>0000-0003-3023-3836 ; 0000-0003-3473-2317 ; 0000-0002-4716-8578 ; 0000-0003-4297-6354 ; 0000-0003-0705-9892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmds.28981$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmds.28981$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35285050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakano, Yoshikazu</creatorcontrib><creatorcontrib>Hirano, Shigeki</creatorcontrib><creatorcontrib>Kojima, Kazuho</creatorcontrib><creatorcontrib>Li, Honglinag</creatorcontrib><creatorcontrib>Sakurai, Toru</creatorcontrib><creatorcontrib>Suzuki, Masahide</creatorcontrib><creatorcontrib>Tai, Hong</creatorcontrib><creatorcontrib>Furukawa, Shogo</creatorcontrib><creatorcontrib>Sugiyama, Atsuhiko</creatorcontrib><creatorcontrib>Yamanaka, Yoshitaka</creatorcontrib><creatorcontrib>Yamamoto, Tatsuya</creatorcontrib><creatorcontrib>Iimori, Takashi</creatorcontrib><creatorcontrib>Yokota, Hajime</creatorcontrib><creatorcontrib>Mukai, Hiroki</creatorcontrib><creatorcontrib>Horikoshi, Takuro</creatorcontrib><creatorcontrib>Uno, Takashi</creatorcontrib><creatorcontrib>Kuwabara, Satoshi</creatorcontrib><title>Dopaminergic Correlates of Regional Cerebral Blood Flow in Parkinsonian Disorders</title><title>Movement disorders</title><addtitle>Mov Disord</addtitle><description>Background Cerebral blood flow (CBF) and dopamine transporter (DAT) images are clinically used for the differential diagnosis of parkinsonian disorders. Objectives This study aimed to examine the correlation of CBF with striatal DAT in patients with Parkinson's disease (PD) and atypical parkinsonian syndromes (APS) and evaluate the diagnostic power of DAT‐correlated CBF in PD through machine learning with each imaging modality alone or in combination. Methods Fifty‐eight patients with PD and 71 with APS (24 with multiple system atrophy, 21 with progressive supranuclear palsy, and 26 with corticobasal syndrome) underwent 123I‐IMP and 123I‐FP‐CIT single‐photon emission computed tomography. Multiple regression analyses for CBF and striatal DAT binding were conducted on each group. PD probability was predicted by machine learning and receiver operating characteristic curves. Results The PD group showed more affected striatal DAT binding positively correlated with the ipsilateral prefrontal perfusion and negatively with the bilateral cerebellar perfusion. In corticobasal syndrome, striatal DAT binding positively correlated with the ipsilateral prefrontal perfusion and negatively with the contralateral precentral perfusion. In Richardson's syndrome, striatal DAT binding positively correlated with perfusion in the ipsilateral precentral cortex and basal ganglia. Machine learning showed that the combination of CBF and DAT was better for delineating PD from APS (area under the curve [AUC] = 0.87) than either CBF (0.67) or DAT (0.50) alone. Conclusions In PD and four‐repeat tauopathy, prefrontal perfusion was related to ipsilateral nigrostriatal dopaminergic function. This dual‐tracer frontostriatal relationship may be effectively used as a diagnostic tool for delineating PD from APS. © 2022 International Parkinson and Movement Disorder Society Analyses of 123I‐IMP and 123I‐FP‐CIT single‐photon emission computed tomography showed that striatal dopamine transporter correlated with frontal perfusion in Parkinson's disease, Richardson's syndrome, and corticobasal syndrome. The results contributed to delineating Parkinson's disease from atypical parkinsonian syndromes by machine learning (area under the receiver operating characteristics curve = 0.87).</description><subject>Atrophy</subject><subject>Basal ganglia</subject><subject>Blood flow</subject><subject>Brain diseases</subject><subject>Central nervous system diseases</subject><subject>Cerebellum</subject><subject>Cerebral blood flow</subject><subject>Computed tomography</subject><subject>Differential diagnosis</subject><subject>Dopamine receptors</subject><subject>Dopamine transporter</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Movement disorders</subject><subject>Neostriatum</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Paralysis</subject><subject>Parkinson's disease</subject><subject>parkinsonian disorders</subject><subject>Perfusion</subject><subject>Progressive supranuclear palsy</subject><subject>single‐photon emission computed tomography</subject><subject>Tau protein</subject><issn>0885-3185</issn><issn>1531-8257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10E1PwyAYB3BiNG5OD34BQ-JFD914KS09aufUZMb3M6GULsy2TFiz7NvL3PRgYjjwHH78w_MH4BSjIUaIjJrSDwnPON4Dfcwojjhh6T7oI85ZRDFnPXDk_RwhjBlODkGPMsIZYqgPnsd2IRvTajczCubWOV3LpfbQVvBFz4xtZQ1z7XThwnBdW1vCSW1X0LTwSboP03rbGtnCsfHWldr5Y3BQydrrk909AO-Tm7f8Lpo-3t7nV9NI0c0XlVZU4ixRTLJE4bQqq4LEcSJ5WvAYqTQjJKGUkAxlNKGcZpIVBQ9jUWWIxXQALra5C2c_O-2XojFe6bqWrbadF-E1z2KUEh7o-R86t50Lm21UGk7MEQnqcquUs947XYmFM410a4GR2PQsQs_iu-dgz3aJXdHo8lf-FBvAaAtWptbr_5PEw_h1G_kFLh2FCw</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Nakano, Yoshikazu</creator><creator>Hirano, Shigeki</creator><creator>Kojima, Kazuho</creator><creator>Li, Honglinag</creator><creator>Sakurai, Toru</creator><creator>Suzuki, Masahide</creator><creator>Tai, Hong</creator><creator>Furukawa, Shogo</creator><creator>Sugiyama, Atsuhiko</creator><creator>Yamanaka, Yoshitaka</creator><creator>Yamamoto, Tatsuya</creator><creator>Iimori, Takashi</creator><creator>Yokota, Hajime</creator><creator>Mukai, Hiroki</creator><creator>Horikoshi, Takuro</creator><creator>Uno, Takashi</creator><creator>Kuwabara, Satoshi</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3023-3836</orcidid><orcidid>https://orcid.org/0000-0003-3473-2317</orcidid><orcidid>https://orcid.org/0000-0002-4716-8578</orcidid><orcidid>https://orcid.org/0000-0003-4297-6354</orcidid><orcidid>https://orcid.org/0000-0003-0705-9892</orcidid></search><sort><creationdate>202206</creationdate><title>Dopaminergic Correlates of Regional Cerebral Blood Flow in Parkinsonian Disorders</title><author>Nakano, Yoshikazu ; Hirano, Shigeki ; Kojima, Kazuho ; Li, Honglinag ; Sakurai, Toru ; Suzuki, Masahide ; Tai, Hong ; Furukawa, Shogo ; Sugiyama, Atsuhiko ; Yamanaka, Yoshitaka ; Yamamoto, Tatsuya ; Iimori, Takashi ; Yokota, Hajime ; Mukai, Hiroki ; Horikoshi, Takuro ; Uno, Takashi ; Kuwabara, Satoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3531-cec3a196c5a56c17fdfb2446a87b840c792263322909363839a5bb8363bf90543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atrophy</topic><topic>Basal ganglia</topic><topic>Blood flow</topic><topic>Brain diseases</topic><topic>Central nervous system diseases</topic><topic>Cerebellum</topic><topic>Cerebral blood flow</topic><topic>Computed tomography</topic><topic>Differential diagnosis</topic><topic>Dopamine receptors</topic><topic>Dopamine transporter</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Movement disorders</topic><topic>Neostriatum</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Paralysis</topic><topic>Parkinson's disease</topic><topic>parkinsonian disorders</topic><topic>Perfusion</topic><topic>Progressive supranuclear palsy</topic><topic>single‐photon emission computed tomography</topic><topic>Tau protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakano, Yoshikazu</creatorcontrib><creatorcontrib>Hirano, Shigeki</creatorcontrib><creatorcontrib>Kojima, Kazuho</creatorcontrib><creatorcontrib>Li, Honglinag</creatorcontrib><creatorcontrib>Sakurai, Toru</creatorcontrib><creatorcontrib>Suzuki, Masahide</creatorcontrib><creatorcontrib>Tai, Hong</creatorcontrib><creatorcontrib>Furukawa, Shogo</creatorcontrib><creatorcontrib>Sugiyama, Atsuhiko</creatorcontrib><creatorcontrib>Yamanaka, Yoshitaka</creatorcontrib><creatorcontrib>Yamamoto, Tatsuya</creatorcontrib><creatorcontrib>Iimori, Takashi</creatorcontrib><creatorcontrib>Yokota, Hajime</creatorcontrib><creatorcontrib>Mukai, Hiroki</creatorcontrib><creatorcontrib>Horikoshi, Takuro</creatorcontrib><creatorcontrib>Uno, Takashi</creatorcontrib><creatorcontrib>Kuwabara, Satoshi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Movement disorders</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakano, Yoshikazu</au><au>Hirano, Shigeki</au><au>Kojima, Kazuho</au><au>Li, Honglinag</au><au>Sakurai, Toru</au><au>Suzuki, Masahide</au><au>Tai, Hong</au><au>Furukawa, Shogo</au><au>Sugiyama, Atsuhiko</au><au>Yamanaka, Yoshitaka</au><au>Yamamoto, Tatsuya</au><au>Iimori, Takashi</au><au>Yokota, Hajime</au><au>Mukai, Hiroki</au><au>Horikoshi, Takuro</au><au>Uno, Takashi</au><au>Kuwabara, Satoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dopaminergic Correlates of Regional Cerebral Blood Flow in Parkinsonian Disorders</atitle><jtitle>Movement disorders</jtitle><addtitle>Mov Disord</addtitle><date>2022-06</date><risdate>2022</risdate><volume>37</volume><issue>6</issue><spage>1235</spage><epage>1244</epage><pages>1235-1244</pages><issn>0885-3185</issn><eissn>1531-8257</eissn><abstract>Background Cerebral blood flow (CBF) and dopamine transporter (DAT) images are clinically used for the differential diagnosis of parkinsonian disorders. Objectives This study aimed to examine the correlation of CBF with striatal DAT in patients with Parkinson's disease (PD) and atypical parkinsonian syndromes (APS) and evaluate the diagnostic power of DAT‐correlated CBF in PD through machine learning with each imaging modality alone or in combination. Methods Fifty‐eight patients with PD and 71 with APS (24 with multiple system atrophy, 21 with progressive supranuclear palsy, and 26 with corticobasal syndrome) underwent 123I‐IMP and 123I‐FP‐CIT single‐photon emission computed tomography. Multiple regression analyses for CBF and striatal DAT binding were conducted on each group. PD probability was predicted by machine learning and receiver operating characteristic curves. Results The PD group showed more affected striatal DAT binding positively correlated with the ipsilateral prefrontal perfusion and negatively with the bilateral cerebellar perfusion. In corticobasal syndrome, striatal DAT binding positively correlated with the ipsilateral prefrontal perfusion and negatively with the contralateral precentral perfusion. In Richardson's syndrome, striatal DAT binding positively correlated with perfusion in the ipsilateral precentral cortex and basal ganglia. Machine learning showed that the combination of CBF and DAT was better for delineating PD from APS (area under the curve [AUC] = 0.87) than either CBF (0.67) or DAT (0.50) alone. Conclusions In PD and four‐repeat tauopathy, prefrontal perfusion was related to ipsilateral nigrostriatal dopaminergic function. This dual‐tracer frontostriatal relationship may be effectively used as a diagnostic tool for delineating PD from APS. © 2022 International Parkinson and Movement Disorder Society Analyses of 123I‐IMP and 123I‐FP‐CIT single‐photon emission computed tomography showed that striatal dopamine transporter correlated with frontal perfusion in Parkinson's disease, Richardson's syndrome, and corticobasal syndrome. The results contributed to delineating Parkinson's disease from atypical parkinsonian syndromes by machine learning (area under the receiver operating characteristics curve = 0.87).</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>35285050</pmid><doi>10.1002/mds.28981</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3023-3836</orcidid><orcidid>https://orcid.org/0000-0003-3473-2317</orcidid><orcidid>https://orcid.org/0000-0002-4716-8578</orcidid><orcidid>https://orcid.org/0000-0003-4297-6354</orcidid><orcidid>https://orcid.org/0000-0003-0705-9892</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-3185
ispartof Movement disorders, 2022-06, Vol.37 (6), p.1235-1244
issn 0885-3185
1531-8257
language eng
recordid cdi_proquest_miscellaneous_2638940728
source Access via Wiley Online Library
subjects Atrophy
Basal ganglia
Blood flow
Brain diseases
Central nervous system diseases
Cerebellum
Cerebral blood flow
Computed tomography
Differential diagnosis
Dopamine receptors
Dopamine transporter
Learning algorithms
Machine learning
Movement disorders
Neostriatum
Neurodegenerative diseases
Neuroimaging
Paralysis
Parkinson's disease
parkinsonian disorders
Perfusion
Progressive supranuclear palsy
single‐photon emission computed tomography
Tau protein
title Dopaminergic Correlates of Regional Cerebral Blood Flow in Parkinsonian Disorders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A36%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dopaminergic%20Correlates%20of%20Regional%20Cerebral%20Blood%20Flow%20in%20Parkinsonian%20Disorders&rft.jtitle=Movement%20disorders&rft.au=Nakano,%20Yoshikazu&rft.date=2022-06&rft.volume=37&rft.issue=6&rft.spage=1235&rft.epage=1244&rft.pages=1235-1244&rft.issn=0885-3185&rft.eissn=1531-8257&rft_id=info:doi/10.1002/mds.28981&rft_dat=%3Cproquest_cross%3E2676764802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676764802&rft_id=info:pmid/35285050&rfr_iscdi=true