Adaptive soft erasure with edge self-attention for weakly supervised semantic segmentation: Thyroid ultrasound image case study

[S U M M A R Y] Weakly supervised segmentation for medical images ease the reliance of models on pixel-level annotation while advancing the field of computer-aided diagnosis. However, the differences in nodule size in thyroid ultrasound images and the limitations of class activation maps in weakly s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2022-05, Vol.144, p.105347-105347, Article 105347
Hauptverfasser: Yu, Mei, Han, Ming, Li, Xuewei, Wei, Xi, Jiang, Han, Chen, Huiling, Yu, Ruiguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105347
container_issue
container_start_page 105347
container_title Computers in biology and medicine
container_volume 144
creator Yu, Mei
Han, Ming
Li, Xuewei
Wei, Xi
Jiang, Han
Chen, Huiling
Yu, Ruiguo
description [S U M M A R Y] Weakly supervised segmentation for medical images ease the reliance of models on pixel-level annotation while advancing the field of computer-aided diagnosis. However, the differences in nodule size in thyroid ultrasound images and the limitations of class activation maps in weakly supervised segmentation methods typically lead to under- and/or over-segmentation problems in real predictions. To alleviate this problem, we propose a weakly supervised segmentation neural network approach. This new method is based on a dual branch soft erase module that expands the foreground response region while constraining the erroneous expansion of the foreground region by the enhancement of background features. The sensitivity of this neural network to the nodule scale size is further enhanced by the scale feature adaptation module, which in turn generates integral and high-quality segmentation masks. In addition, while the nodule area can be significantly expanded through soft erase module and scale feature adaptation module, the activation effect in the nodule edge area is still not satisfactory, so that we further add an edge-based attention mechanism to strengthen the nodule edge segmentation effect. The results of experiments performed on the thyroid ultrasound image dataset showed that our new approach significantly outperformed existing weakly supervised semantic segmentation methods, e.g., 5.9% and 6.3% more accurate than the second-based results in terms of Jaccard and Dice coefficients, respectively. •In this paper, only image-level labels are employed to achieve weakly supervised segmentation of thyroid ultrasound images.•A novel method is proposed to generate class activation maps more accurately and completely in thyroid ultrasound images.•The edge self-attention module is proposed to improve the segmentation performance of nodule edge regions.
doi_str_mv 10.1016/j.compbiomed.2022.105347
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2638726178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482522001391</els_id><sourcerecordid>2646711012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-3b16e4a39a053c32786b576e39bc6af043f28e5111bacc36a1ac1155ddc19d883</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhq0K1G4__gKyxIVLFn8kTsKtVFCQKnEpZ8uxJ62XJA62s9We-teZaFshceFke-aZd2b8EkI523LG1cfd1oZx7nwYwW0FEwLDlSzrE7LhTd0W6-MN2TDGWVE2ojoj5yntGGMlk-yUnMlK1Koq2w15vnZmzn4PNIU-U4gmLRHok8-PFNwDhmHoC5MzTNmHifYh0icwv4YDTcsMce8TOIRGg3mLl4cRSbOyn-j94yEG7-gyZNQNy-SoHw2KWpNQOS_ucEne9mZIcPVyXpCfX7_c33wr7n7cfr-5vitsyUQuZMcVlEa2BlezUtSN6qpagWw7q0zPStmLBirOeWeslcpwYzmvKucsb13TyAvy4ag7x_B7gZT16JOFYTAThCVpoWRTC8XrFX3_D7oLS5xwOqRKVXO0QCDVHCkbQ0oRej1HXC4eNGd6NUnv9F-T9GqSPpqEpe9eGizdmnstfHUFgc9HAPBH9h6iTtbDZMH5CDZrF_z_u_wBxiOqHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646711012</pqid></control><display><type>article</type><title>Adaptive soft erasure with edge self-attention for weakly supervised semantic segmentation: Thyroid ultrasound image case study</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central UK/Ireland</source><creator>Yu, Mei ; Han, Ming ; Li, Xuewei ; Wei, Xi ; Jiang, Han ; Chen, Huiling ; Yu, Ruiguo</creator><creatorcontrib>Yu, Mei ; Han, Ming ; Li, Xuewei ; Wei, Xi ; Jiang, Han ; Chen, Huiling ; Yu, Ruiguo</creatorcontrib><description>[S U M M A R Y] Weakly supervised segmentation for medical images ease the reliance of models on pixel-level annotation while advancing the field of computer-aided diagnosis. However, the differences in nodule size in thyroid ultrasound images and the limitations of class activation maps in weakly supervised segmentation methods typically lead to under- and/or over-segmentation problems in real predictions. To alleviate this problem, we propose a weakly supervised segmentation neural network approach. This new method is based on a dual branch soft erase module that expands the foreground response region while constraining the erroneous expansion of the foreground region by the enhancement of background features. The sensitivity of this neural network to the nodule scale size is further enhanced by the scale feature adaptation module, which in turn generates integral and high-quality segmentation masks. In addition, while the nodule area can be significantly expanded through soft erase module and scale feature adaptation module, the activation effect in the nodule edge area is still not satisfactory, so that we further add an edge-based attention mechanism to strengthen the nodule edge segmentation effect. The results of experiments performed on the thyroid ultrasound image dataset showed that our new approach significantly outperformed existing weakly supervised semantic segmentation methods, e.g., 5.9% and 6.3% more accurate than the second-based results in terms of Jaccard and Dice coefficients, respectively. •In this paper, only image-level labels are employed to achieve weakly supervised segmentation of thyroid ultrasound images.•A novel method is proposed to generate class activation maps more accurately and completely in thyroid ultrasound images.•The edge self-attention module is proposed to improve the segmentation performance of nodule edge regions.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2022.105347</identifier><identifier>PMID: 35276549</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Adaptation ; Classification ; Deep learning ; Diagnosis, Computer-Assisted - methods ; Image annotation ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Medical imaging ; Methods ; Modules ; Neural networks ; Neural Networks, Computer ; Optimization ; Semantic segmentation ; Semantics ; Thyroid ; Thyroid gland ; Thyroid Gland - diagnostic imaging ; Thyroid nodules ; Ultrasonic imaging ; Ultrasonography - methods ; Ultrasound ; Weakly supervised</subject><ispartof>Computers in biology and medicine, 2022-05, Vol.144, p.105347-105347, Article 105347</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><rights>2022. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-3b16e4a39a053c32786b576e39bc6af043f28e5111bacc36a1ac1155ddc19d883</citedby><cites>FETCH-LOGICAL-c402t-3b16e4a39a053c32786b576e39bc6af043f28e5111bacc36a1ac1155ddc19d883</cites><orcidid>0000-0002-5330-7298 ; 0000-0002-5169-4829 ; 0000-0003-0924-6624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2646711012?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,64361,64363,64365,65309,72215</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35276549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Mei</creatorcontrib><creatorcontrib>Han, Ming</creatorcontrib><creatorcontrib>Li, Xuewei</creatorcontrib><creatorcontrib>Wei, Xi</creatorcontrib><creatorcontrib>Jiang, Han</creatorcontrib><creatorcontrib>Chen, Huiling</creatorcontrib><creatorcontrib>Yu, Ruiguo</creatorcontrib><title>Adaptive soft erasure with edge self-attention for weakly supervised semantic segmentation: Thyroid ultrasound image case study</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>[S U M M A R Y] Weakly supervised segmentation for medical images ease the reliance of models on pixel-level annotation while advancing the field of computer-aided diagnosis. However, the differences in nodule size in thyroid ultrasound images and the limitations of class activation maps in weakly supervised segmentation methods typically lead to under- and/or over-segmentation problems in real predictions. To alleviate this problem, we propose a weakly supervised segmentation neural network approach. This new method is based on a dual branch soft erase module that expands the foreground response region while constraining the erroneous expansion of the foreground region by the enhancement of background features. The sensitivity of this neural network to the nodule scale size is further enhanced by the scale feature adaptation module, which in turn generates integral and high-quality segmentation masks. In addition, while the nodule area can be significantly expanded through soft erase module and scale feature adaptation module, the activation effect in the nodule edge area is still not satisfactory, so that we further add an edge-based attention mechanism to strengthen the nodule edge segmentation effect. The results of experiments performed on the thyroid ultrasound image dataset showed that our new approach significantly outperformed existing weakly supervised semantic segmentation methods, e.g., 5.9% and 6.3% more accurate than the second-based results in terms of Jaccard and Dice coefficients, respectively. •In this paper, only image-level labels are employed to achieve weakly supervised segmentation of thyroid ultrasound images.•A novel method is proposed to generate class activation maps more accurately and completely in thyroid ultrasound images.•The edge self-attention module is proposed to improve the segmentation performance of nodule edge regions.</description><subject>Adaptation</subject><subject>Classification</subject><subject>Deep learning</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Image annotation</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Medical imaging</subject><subject>Methods</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Optimization</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Thyroid</subject><subject>Thyroid gland</subject><subject>Thyroid Gland - diagnostic imaging</subject><subject>Thyroid nodules</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><subject>Weakly supervised</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1v1DAQhq0K1G4__gKyxIVLFn8kTsKtVFCQKnEpZ8uxJ62XJA62s9We-teZaFshceFke-aZd2b8EkI523LG1cfd1oZx7nwYwW0FEwLDlSzrE7LhTd0W6-MN2TDGWVE2ojoj5yntGGMlk-yUnMlK1Koq2w15vnZmzn4PNIU-U4gmLRHok8-PFNwDhmHoC5MzTNmHifYh0icwv4YDTcsMce8TOIRGg3mLl4cRSbOyn-j94yEG7-gyZNQNy-SoHw2KWpNQOS_ucEne9mZIcPVyXpCfX7_c33wr7n7cfr-5vitsyUQuZMcVlEa2BlezUtSN6qpagWw7q0zPStmLBirOeWeslcpwYzmvKucsb13TyAvy4ag7x_B7gZT16JOFYTAThCVpoWRTC8XrFX3_D7oLS5xwOqRKVXO0QCDVHCkbQ0oRej1HXC4eNGd6NUnv9F-T9GqSPpqEpe9eGizdmnstfHUFgc9HAPBH9h6iTtbDZMH5CDZrF_z_u_wBxiOqHg</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Yu, Mei</creator><creator>Han, Ming</creator><creator>Li, Xuewei</creator><creator>Wei, Xi</creator><creator>Jiang, Han</creator><creator>Chen, Huiling</creator><creator>Yu, Ruiguo</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5330-7298</orcidid><orcidid>https://orcid.org/0000-0002-5169-4829</orcidid><orcidid>https://orcid.org/0000-0003-0924-6624</orcidid></search><sort><creationdate>202205</creationdate><title>Adaptive soft erasure with edge self-attention for weakly supervised semantic segmentation: Thyroid ultrasound image case study</title><author>Yu, Mei ; Han, Ming ; Li, Xuewei ; Wei, Xi ; Jiang, Han ; Chen, Huiling ; Yu, Ruiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-3b16e4a39a053c32786b576e39bc6af043f28e5111bacc36a1ac1155ddc19d883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation</topic><topic>Classification</topic><topic>Deep learning</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Image annotation</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Medical imaging</topic><topic>Methods</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Optimization</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Thyroid</topic><topic>Thyroid gland</topic><topic>Thyroid Gland - diagnostic imaging</topic><topic>Thyroid nodules</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><topic>Weakly supervised</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Mei</creatorcontrib><creatorcontrib>Han, Ming</creatorcontrib><creatorcontrib>Li, Xuewei</creatorcontrib><creatorcontrib>Wei, Xi</creatorcontrib><creatorcontrib>Jiang, Han</creatorcontrib><creatorcontrib>Chen, Huiling</creatorcontrib><creatorcontrib>Yu, Ruiguo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>test</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Mei</au><au>Han, Ming</au><au>Li, Xuewei</au><au>Wei, Xi</au><au>Jiang, Han</au><au>Chen, Huiling</au><au>Yu, Ruiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive soft erasure with edge self-attention for weakly supervised semantic segmentation: Thyroid ultrasound image case study</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2022-05</date><risdate>2022</risdate><volume>144</volume><spage>105347</spage><epage>105347</epage><pages>105347-105347</pages><artnum>105347</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>[S U M M A R Y] Weakly supervised segmentation for medical images ease the reliance of models on pixel-level annotation while advancing the field of computer-aided diagnosis. However, the differences in nodule size in thyroid ultrasound images and the limitations of class activation maps in weakly supervised segmentation methods typically lead to under- and/or over-segmentation problems in real predictions. To alleviate this problem, we propose a weakly supervised segmentation neural network approach. This new method is based on a dual branch soft erase module that expands the foreground response region while constraining the erroneous expansion of the foreground region by the enhancement of background features. The sensitivity of this neural network to the nodule scale size is further enhanced by the scale feature adaptation module, which in turn generates integral and high-quality segmentation masks. In addition, while the nodule area can be significantly expanded through soft erase module and scale feature adaptation module, the activation effect in the nodule edge area is still not satisfactory, so that we further add an edge-based attention mechanism to strengthen the nodule edge segmentation effect. The results of experiments performed on the thyroid ultrasound image dataset showed that our new approach significantly outperformed existing weakly supervised semantic segmentation methods, e.g., 5.9% and 6.3% more accurate than the second-based results in terms of Jaccard and Dice coefficients, respectively. •In this paper, only image-level labels are employed to achieve weakly supervised segmentation of thyroid ultrasound images.•A novel method is proposed to generate class activation maps more accurately and completely in thyroid ultrasound images.•The edge self-attention module is proposed to improve the segmentation performance of nodule edge regions.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>35276549</pmid><doi>10.1016/j.compbiomed.2022.105347</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5330-7298</orcidid><orcidid>https://orcid.org/0000-0002-5169-4829</orcidid><orcidid>https://orcid.org/0000-0003-0924-6624</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2022-05, Vol.144, p.105347-105347, Article 105347
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_2638726178
source MEDLINE; Elsevier ScienceDirect Journals Complete; ProQuest Central UK/Ireland
subjects Adaptation
Classification
Deep learning
Diagnosis, Computer-Assisted - methods
Image annotation
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Medical imaging
Methods
Modules
Neural networks
Neural Networks, Computer
Optimization
Semantic segmentation
Semantics
Thyroid
Thyroid gland
Thyroid Gland - diagnostic imaging
Thyroid nodules
Ultrasonic imaging
Ultrasonography - methods
Ultrasound
Weakly supervised
title Adaptive soft erasure with edge self-attention for weakly supervised semantic segmentation: Thyroid ultrasound image case study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20soft%20erasure%20with%20edge%20self-attention%20for%20weakly%20supervised%20semantic%20segmentation:%20Thyroid%20ultrasound%20image%20case%20study&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Yu,%20Mei&rft.date=2022-05&rft.volume=144&rft.spage=105347&rft.epage=105347&rft.pages=105347-105347&rft.artnum=105347&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2022.105347&rft_dat=%3Cproquest_cross%3E2646711012%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646711012&rft_id=info:pmid/35276549&rft_els_id=S0010482522001391&rfr_iscdi=true