Freeze‐Tolerant Hydrogel Electrolyte with High Strength for Stable Operation of Flexible Zinc‐Ion Hybrid Supercapacitors
Constructing ionic conductive hydrogels with diversified properties is crucial for portable zinc‐ion hybrid supercapacitors (ZHSCs). Herein, a freeze‐tolerant hydrogel electrolyte (AF PVA‐CMC/Zn(CF3SO3)2) is developed by forming a semi‐interpenetrating anti‐freezing polyvinyl alcohol‐carboxymethyl c...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-04, Vol.18 (16), p.e2200055-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 16 |
container_start_page | e2200055 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 18 |
creator | Zhu, Xiaoqing Ji, Chenchen Meng, Qiangqiang Mi, Hongyu Yang, Qi Li, Zixiao Yang, Nianjun Qiu, Jieshan |
description | Constructing ionic conductive hydrogels with diversified properties is crucial for portable zinc‐ion hybrid supercapacitors (ZHSCs). Herein, a freeze‐tolerant hydrogel electrolyte (AF PVA‐CMC/Zn(CF3SO3)2) is developed by forming a semi‐interpenetrating anti‐freezing polyvinyl alcohol‐carboxymethyl cellulose (AF PVA‐CMC) network filled with the ethylene glycol (EG)‐containing Zn(CF3SO3)2 aqueous solution. The semi‐interpenetrating AF PVA‐CMC/Zn(CF3SO3)2 possesses enhanced mechanical properties, realizes the uniform zinc deposition, and impedes the dendrite growth. Notably, the interaction between PVA and EG suppresses the ice crystal formation and prevents freezing at −20 °C. Due to these advantages, the designed hydrogel owns high ionic conductivity of 1.73/0.75 S m−1 at 20/−20 °C with excellent tensile/compression strength at 20 °C. Impressively, the flexible AF quasi‐solid‐state ZHSC employing the hydrogel electrolyte achieves a superior energy density at 20/−20 °C (87.9/60.7 Wh kg−1). It maintains nearly 84.8% of the initial capacity after 10 000 cycles and a low self‐discharge rate (1.77 mV h−1) at 20 °C, together with great tolerance to corrosion. Moreover, this device demonstrates a stable electrochemical performance at −20 °C under deformation. The obtained results provide valuable insights for constructing durable hydrogel electrolytes in cold environments.
A freeze‐tolerant hydrogel electrolyte of anti‐freezing polyvinyl alcohol‐carboxymethyl cellulose/Zn(CF3SO3)2 with a semi‐interpenetrating network is developed, which possesses high ionic conductivity, superior mechanical strength, and excellent ability of dendrite growth inhibition. With these advantages, the AF zinc‐ion hybrid supercapacitor constructed with this hydrogel electrolyte exhibits a high energy density of 87.9/60.7 Wh kg−1 at 20/−20 °C and exceptional durability. |
doi_str_mv | 10.1002/smll.202200055 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2638715888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652761412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4135-96eb6debda710bbae38a05813dd7ca243b5bc64f9b7dbbe82a9d3fc461d4574f3</originalsourceid><addsrcrecordid>eNqFkctOGzEUhq2qqEDabZfIUjfdJPg2t2WFCEFKxSJh083IlzPByBmn9ozCVCz6CH1GnqSOAkFiw-pc9J1Pln-EvlIyoYSw87h2bsIIY4SQLPuATmhO-TgvWfXx0FNyjE5jvCeEUyaKT-iYZ6wQQrAT9DgNAH_g6e-_pXcQZNvh2WCCX4HDlw50F7wbOsBb293hmV3d4UUXoF2lqfEhDVI5wDebdNpZ32Lf4KmDB7vb_rKtTuLrtJ4NKliDF30CtdxIbTsf4md01EgX4ctzHaHb6eXyYjae31xdX_yYj7WgPBtXOajcgDKyoEQpCbyUJCspN6bQkgmuMqVz0VSqMEpByWRleKNFTo3ICtHwEfq-926C_91D7Oq1jRqcky34PtYs52VBs7IsE_rtDXrv-9Cm1yUq_VpOBWWJmuwpHXyMAZp6E-xahqGmpN7lUu9yqQ-5pIOzZ22v1mAO-EsQCaj2wNY6GN7R1Yuf8_mr_D_3iJ36</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652761412</pqid></control><display><type>article</type><title>Freeze‐Tolerant Hydrogel Electrolyte with High Strength for Stable Operation of Flexible Zinc‐Ion Hybrid Supercapacitors</title><source>Wiley-Blackwell Journals</source><creator>Zhu, Xiaoqing ; Ji, Chenchen ; Meng, Qiangqiang ; Mi, Hongyu ; Yang, Qi ; Li, Zixiao ; Yang, Nianjun ; Qiu, Jieshan</creator><creatorcontrib>Zhu, Xiaoqing ; Ji, Chenchen ; Meng, Qiangqiang ; Mi, Hongyu ; Yang, Qi ; Li, Zixiao ; Yang, Nianjun ; Qiu, Jieshan</creatorcontrib><description>Constructing ionic conductive hydrogels with diversified properties is crucial for portable zinc‐ion hybrid supercapacitors (ZHSCs). Herein, a freeze‐tolerant hydrogel electrolyte (AF PVA‐CMC/Zn(CF3SO3)2) is developed by forming a semi‐interpenetrating anti‐freezing polyvinyl alcohol‐carboxymethyl cellulose (AF PVA‐CMC) network filled with the ethylene glycol (EG)‐containing Zn(CF3SO3)2 aqueous solution. The semi‐interpenetrating AF PVA‐CMC/Zn(CF3SO3)2 possesses enhanced mechanical properties, realizes the uniform zinc deposition, and impedes the dendrite growth. Notably, the interaction between PVA and EG suppresses the ice crystal formation and prevents freezing at −20 °C. Due to these advantages, the designed hydrogel owns high ionic conductivity of 1.73/0.75 S m−1 at 20/−20 °C with excellent tensile/compression strength at 20 °C. Impressively, the flexible AF quasi‐solid‐state ZHSC employing the hydrogel electrolyte achieves a superior energy density at 20/−20 °C (87.9/60.7 Wh kg−1). It maintains nearly 84.8% of the initial capacity after 10 000 cycles and a low self‐discharge rate (1.77 mV h−1) at 20 °C, together with great tolerance to corrosion. Moreover, this device demonstrates a stable electrochemical performance at −20 °C under deformation. The obtained results provide valuable insights for constructing durable hydrogel electrolytes in cold environments.
A freeze‐tolerant hydrogel electrolyte of anti‐freezing polyvinyl alcohol‐carboxymethyl cellulose/Zn(CF3SO3)2 with a semi‐interpenetrating network is developed, which possesses high ionic conductivity, superior mechanical strength, and excellent ability of dendrite growth inhibition. With these advantages, the AF zinc‐ion hybrid supercapacitor constructed with this hydrogel electrolyte exhibits a high energy density of 87.9/60.7 Wh kg−1 at 20/−20 °C and exceptional durability.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202200055</identifier><identifier>PMID: 35274442</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>anti‐freezing ; Aqueous solutions ; Carboxymethyl cellulose ; Compressive strength ; Deformation ; Dendritic structure ; Electrochemical analysis ; Electrolytes ; Ethylene glycol ; Flux density ; Freezing ; hydrogel electrolytes ; Hydrogels ; Ice crystals ; Ice formation ; Ion currents ; mechanical performance ; Mechanical properties ; Nanotechnology ; Polyvinyl alcohol ; Supercapacitors ; Zinc ; zinc dendrites ; zinc‐ion hybrid supercapacitors</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-04, Vol.18 (16), p.e2200055-n/a</ispartof><rights>2022 The Authors. Small published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Small published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4135-96eb6debda710bbae38a05813dd7ca243b5bc64f9b7dbbe82a9d3fc461d4574f3</citedby><cites>FETCH-LOGICAL-c4135-96eb6debda710bbae38a05813dd7ca243b5bc64f9b7dbbe82a9d3fc461d4574f3</cites><orcidid>0000-0002-5558-2314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202200055$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202200055$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35274442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Xiaoqing</creatorcontrib><creatorcontrib>Ji, Chenchen</creatorcontrib><creatorcontrib>Meng, Qiangqiang</creatorcontrib><creatorcontrib>Mi, Hongyu</creatorcontrib><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Li, Zixiao</creatorcontrib><creatorcontrib>Yang, Nianjun</creatorcontrib><creatorcontrib>Qiu, Jieshan</creatorcontrib><title>Freeze‐Tolerant Hydrogel Electrolyte with High Strength for Stable Operation of Flexible Zinc‐Ion Hybrid Supercapacitors</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Constructing ionic conductive hydrogels with diversified properties is crucial for portable zinc‐ion hybrid supercapacitors (ZHSCs). Herein, a freeze‐tolerant hydrogel electrolyte (AF PVA‐CMC/Zn(CF3SO3)2) is developed by forming a semi‐interpenetrating anti‐freezing polyvinyl alcohol‐carboxymethyl cellulose (AF PVA‐CMC) network filled with the ethylene glycol (EG)‐containing Zn(CF3SO3)2 aqueous solution. The semi‐interpenetrating AF PVA‐CMC/Zn(CF3SO3)2 possesses enhanced mechanical properties, realizes the uniform zinc deposition, and impedes the dendrite growth. Notably, the interaction between PVA and EG suppresses the ice crystal formation and prevents freezing at −20 °C. Due to these advantages, the designed hydrogel owns high ionic conductivity of 1.73/0.75 S m−1 at 20/−20 °C with excellent tensile/compression strength at 20 °C. Impressively, the flexible AF quasi‐solid‐state ZHSC employing the hydrogel electrolyte achieves a superior energy density at 20/−20 °C (87.9/60.7 Wh kg−1). It maintains nearly 84.8% of the initial capacity after 10 000 cycles and a low self‐discharge rate (1.77 mV h−1) at 20 °C, together with great tolerance to corrosion. Moreover, this device demonstrates a stable electrochemical performance at −20 °C under deformation. The obtained results provide valuable insights for constructing durable hydrogel electrolytes in cold environments.
A freeze‐tolerant hydrogel electrolyte of anti‐freezing polyvinyl alcohol‐carboxymethyl cellulose/Zn(CF3SO3)2 with a semi‐interpenetrating network is developed, which possesses high ionic conductivity, superior mechanical strength, and excellent ability of dendrite growth inhibition. With these advantages, the AF zinc‐ion hybrid supercapacitor constructed with this hydrogel electrolyte exhibits a high energy density of 87.9/60.7 Wh kg−1 at 20/−20 °C and exceptional durability.</description><subject>anti‐freezing</subject><subject>Aqueous solutions</subject><subject>Carboxymethyl cellulose</subject><subject>Compressive strength</subject><subject>Deformation</subject><subject>Dendritic structure</subject><subject>Electrochemical analysis</subject><subject>Electrolytes</subject><subject>Ethylene glycol</subject><subject>Flux density</subject><subject>Freezing</subject><subject>hydrogel electrolytes</subject><subject>Hydrogels</subject><subject>Ice crystals</subject><subject>Ice formation</subject><subject>Ion currents</subject><subject>mechanical performance</subject><subject>Mechanical properties</subject><subject>Nanotechnology</subject><subject>Polyvinyl alcohol</subject><subject>Supercapacitors</subject><subject>Zinc</subject><subject>zinc dendrites</subject><subject>zinc‐ion hybrid supercapacitors</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkctOGzEUhq2qqEDabZfIUjfdJPg2t2WFCEFKxSJh083IlzPByBmn9ozCVCz6CH1GnqSOAkFiw-pc9J1Pln-EvlIyoYSw87h2bsIIY4SQLPuATmhO-TgvWfXx0FNyjE5jvCeEUyaKT-iYZ6wQQrAT9DgNAH_g6e-_pXcQZNvh2WCCX4HDlw50F7wbOsBb293hmV3d4UUXoF2lqfEhDVI5wDebdNpZ32Lf4KmDB7vb_rKtTuLrtJ4NKliDF30CtdxIbTsf4md01EgX4ctzHaHb6eXyYjae31xdX_yYj7WgPBtXOajcgDKyoEQpCbyUJCspN6bQkgmuMqVz0VSqMEpByWRleKNFTo3ICtHwEfq-926C_91D7Oq1jRqcky34PtYs52VBs7IsE_rtDXrv-9Cm1yUq_VpOBWWJmuwpHXyMAZp6E-xahqGmpN7lUu9yqQ-5pIOzZ22v1mAO-EsQCaj2wNY6GN7R1Yuf8_mr_D_3iJ36</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Zhu, Xiaoqing</creator><creator>Ji, Chenchen</creator><creator>Meng, Qiangqiang</creator><creator>Mi, Hongyu</creator><creator>Yang, Qi</creator><creator>Li, Zixiao</creator><creator>Yang, Nianjun</creator><creator>Qiu, Jieshan</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5558-2314</orcidid></search><sort><creationdate>20220401</creationdate><title>Freeze‐Tolerant Hydrogel Electrolyte with High Strength for Stable Operation of Flexible Zinc‐Ion Hybrid Supercapacitors</title><author>Zhu, Xiaoqing ; Ji, Chenchen ; Meng, Qiangqiang ; Mi, Hongyu ; Yang, Qi ; Li, Zixiao ; Yang, Nianjun ; Qiu, Jieshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4135-96eb6debda710bbae38a05813dd7ca243b5bc64f9b7dbbe82a9d3fc461d4574f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>anti‐freezing</topic><topic>Aqueous solutions</topic><topic>Carboxymethyl cellulose</topic><topic>Compressive strength</topic><topic>Deformation</topic><topic>Dendritic structure</topic><topic>Electrochemical analysis</topic><topic>Electrolytes</topic><topic>Ethylene glycol</topic><topic>Flux density</topic><topic>Freezing</topic><topic>hydrogel electrolytes</topic><topic>Hydrogels</topic><topic>Ice crystals</topic><topic>Ice formation</topic><topic>Ion currents</topic><topic>mechanical performance</topic><topic>Mechanical properties</topic><topic>Nanotechnology</topic><topic>Polyvinyl alcohol</topic><topic>Supercapacitors</topic><topic>Zinc</topic><topic>zinc dendrites</topic><topic>zinc‐ion hybrid supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xiaoqing</creatorcontrib><creatorcontrib>Ji, Chenchen</creatorcontrib><creatorcontrib>Meng, Qiangqiang</creatorcontrib><creatorcontrib>Mi, Hongyu</creatorcontrib><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Li, Zixiao</creatorcontrib><creatorcontrib>Yang, Nianjun</creatorcontrib><creatorcontrib>Qiu, Jieshan</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xiaoqing</au><au>Ji, Chenchen</au><au>Meng, Qiangqiang</au><au>Mi, Hongyu</au><au>Yang, Qi</au><au>Li, Zixiao</au><au>Yang, Nianjun</au><au>Qiu, Jieshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Freeze‐Tolerant Hydrogel Electrolyte with High Strength for Stable Operation of Flexible Zinc‐Ion Hybrid Supercapacitors</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>18</volume><issue>16</issue><spage>e2200055</spage><epage>n/a</epage><pages>e2200055-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Constructing ionic conductive hydrogels with diversified properties is crucial for portable zinc‐ion hybrid supercapacitors (ZHSCs). Herein, a freeze‐tolerant hydrogel electrolyte (AF PVA‐CMC/Zn(CF3SO3)2) is developed by forming a semi‐interpenetrating anti‐freezing polyvinyl alcohol‐carboxymethyl cellulose (AF PVA‐CMC) network filled with the ethylene glycol (EG)‐containing Zn(CF3SO3)2 aqueous solution. The semi‐interpenetrating AF PVA‐CMC/Zn(CF3SO3)2 possesses enhanced mechanical properties, realizes the uniform zinc deposition, and impedes the dendrite growth. Notably, the interaction between PVA and EG suppresses the ice crystal formation and prevents freezing at −20 °C. Due to these advantages, the designed hydrogel owns high ionic conductivity of 1.73/0.75 S m−1 at 20/−20 °C with excellent tensile/compression strength at 20 °C. Impressively, the flexible AF quasi‐solid‐state ZHSC employing the hydrogel electrolyte achieves a superior energy density at 20/−20 °C (87.9/60.7 Wh kg−1). It maintains nearly 84.8% of the initial capacity after 10 000 cycles and a low self‐discharge rate (1.77 mV h−1) at 20 °C, together with great tolerance to corrosion. Moreover, this device demonstrates a stable electrochemical performance at −20 °C under deformation. The obtained results provide valuable insights for constructing durable hydrogel electrolytes in cold environments.
A freeze‐tolerant hydrogel electrolyte of anti‐freezing polyvinyl alcohol‐carboxymethyl cellulose/Zn(CF3SO3)2 with a semi‐interpenetrating network is developed, which possesses high ionic conductivity, superior mechanical strength, and excellent ability of dendrite growth inhibition. With these advantages, the AF zinc‐ion hybrid supercapacitor constructed with this hydrogel electrolyte exhibits a high energy density of 87.9/60.7 Wh kg−1 at 20/−20 °C and exceptional durability.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35274442</pmid><doi>10.1002/smll.202200055</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5558-2314</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2022-04, Vol.18 (16), p.e2200055-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2638715888 |
source | Wiley-Blackwell Journals |
subjects | anti‐freezing Aqueous solutions Carboxymethyl cellulose Compressive strength Deformation Dendritic structure Electrochemical analysis Electrolytes Ethylene glycol Flux density Freezing hydrogel electrolytes Hydrogels Ice crystals Ice formation Ion currents mechanical performance Mechanical properties Nanotechnology Polyvinyl alcohol Supercapacitors Zinc zinc dendrites zinc‐ion hybrid supercapacitors |
title | Freeze‐Tolerant Hydrogel Electrolyte with High Strength for Stable Operation of Flexible Zinc‐Ion Hybrid Supercapacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A33%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Freeze%E2%80%90Tolerant%20Hydrogel%20Electrolyte%20with%20High%20Strength%20for%20Stable%20Operation%20of%20Flexible%20Zinc%E2%80%90Ion%20Hybrid%20Supercapacitors&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhu,%20Xiaoqing&rft.date=2022-04-01&rft.volume=18&rft.issue=16&rft.spage=e2200055&rft.epage=n/a&rft.pages=e2200055-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202200055&rft_dat=%3Cproquest_cross%3E2652761412%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652761412&rft_id=info:pmid/35274442&rfr_iscdi=true |