Freeze‐Tolerant Hydrogel Electrolyte with High Strength for Stable Operation of Flexible Zinc‐Ion Hybrid Supercapacitors

Constructing ionic conductive hydrogels with diversified properties is crucial for portable zinc‐ion hybrid supercapacitors (ZHSCs). Herein, a freeze‐tolerant hydrogel electrolyte (AF PVA‐CMC/Zn(CF3SO3)2) is developed by forming a semi‐interpenetrating anti‐freezing polyvinyl alcohol‐carboxymethyl c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-04, Vol.18 (16), p.e2200055-n/a
Hauptverfasser: Zhu, Xiaoqing, Ji, Chenchen, Meng, Qiangqiang, Mi, Hongyu, Yang, Qi, Li, Zixiao, Yang, Nianjun, Qiu, Jieshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page e2200055
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 18
creator Zhu, Xiaoqing
Ji, Chenchen
Meng, Qiangqiang
Mi, Hongyu
Yang, Qi
Li, Zixiao
Yang, Nianjun
Qiu, Jieshan
description Constructing ionic conductive hydrogels with diversified properties is crucial for portable zinc‐ion hybrid supercapacitors (ZHSCs). Herein, a freeze‐tolerant hydrogel electrolyte (AF PVA‐CMC/Zn(CF3SO3)2) is developed by forming a semi‐interpenetrating anti‐freezing polyvinyl alcohol‐carboxymethyl cellulose (AF PVA‐CMC) network filled with the ethylene glycol (EG)‐containing Zn(CF3SO3)2 aqueous solution. The semi‐interpenetrating AF PVA‐CMC/Zn(CF3SO3)2 possesses enhanced mechanical properties, realizes the uniform zinc deposition, and impedes the dendrite growth. Notably, the interaction between PVA and EG suppresses the ice crystal formation and prevents freezing at −20 °C. Due to these advantages, the designed hydrogel owns high ionic conductivity of 1.73/0.75 S m−1 at 20/−20 °C with excellent tensile/compression strength at 20 °C. Impressively, the flexible AF quasi‐solid‐state ZHSC employing the hydrogel electrolyte achieves a superior energy density at 20/−20 °C (87.9/60.7 Wh kg−1). It maintains nearly 84.8% of the initial capacity after 10 000 cycles and a low self‐discharge rate (1.77 mV h−1) at 20 °C, together with great tolerance to corrosion. Moreover, this device demonstrates a stable electrochemical performance at −20 °C under deformation. The obtained results provide valuable insights for constructing durable hydrogel electrolytes in cold environments. A freeze‐tolerant hydrogel electrolyte of anti‐freezing polyvinyl alcohol‐carboxymethyl cellulose/Zn(CF3SO3)2 with a semi‐interpenetrating network is developed, which possesses high ionic conductivity, superior mechanical strength, and excellent ability of dendrite growth inhibition. With these advantages, the AF zinc‐ion hybrid supercapacitor constructed with this hydrogel electrolyte exhibits a high energy density of 87.9/60.7 Wh kg−1 at 20/−20 °C and exceptional durability.
doi_str_mv 10.1002/smll.202200055
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2638715888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652761412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4135-96eb6debda710bbae38a05813dd7ca243b5bc64f9b7dbbe82a9d3fc461d4574f3</originalsourceid><addsrcrecordid>eNqFkctOGzEUhq2qqEDabZfIUjfdJPg2t2WFCEFKxSJh083IlzPByBmn9ozCVCz6CH1GnqSOAkFiw-pc9J1Pln-EvlIyoYSw87h2bsIIY4SQLPuATmhO-TgvWfXx0FNyjE5jvCeEUyaKT-iYZ6wQQrAT9DgNAH_g6e-_pXcQZNvh2WCCX4HDlw50F7wbOsBb293hmV3d4UUXoF2lqfEhDVI5wDebdNpZ32Lf4KmDB7vb_rKtTuLrtJ4NKliDF30CtdxIbTsf4md01EgX4ctzHaHb6eXyYjae31xdX_yYj7WgPBtXOajcgDKyoEQpCbyUJCspN6bQkgmuMqVz0VSqMEpByWRleKNFTo3ICtHwEfq-926C_91D7Oq1jRqcky34PtYs52VBs7IsE_rtDXrv-9Cm1yUq_VpOBWWJmuwpHXyMAZp6E-xahqGmpN7lUu9yqQ-5pIOzZ22v1mAO-EsQCaj2wNY6GN7R1Yuf8_mr_D_3iJ36</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652761412</pqid></control><display><type>article</type><title>Freeze‐Tolerant Hydrogel Electrolyte with High Strength for Stable Operation of Flexible Zinc‐Ion Hybrid Supercapacitors</title><source>Wiley-Blackwell Journals</source><creator>Zhu, Xiaoqing ; Ji, Chenchen ; Meng, Qiangqiang ; Mi, Hongyu ; Yang, Qi ; Li, Zixiao ; Yang, Nianjun ; Qiu, Jieshan</creator><creatorcontrib>Zhu, Xiaoqing ; Ji, Chenchen ; Meng, Qiangqiang ; Mi, Hongyu ; Yang, Qi ; Li, Zixiao ; Yang, Nianjun ; Qiu, Jieshan</creatorcontrib><description>Constructing ionic conductive hydrogels with diversified properties is crucial for portable zinc‐ion hybrid supercapacitors (ZHSCs). Herein, a freeze‐tolerant hydrogel electrolyte (AF PVA‐CMC/Zn(CF3SO3)2) is developed by forming a semi‐interpenetrating anti‐freezing polyvinyl alcohol‐carboxymethyl cellulose (AF PVA‐CMC) network filled with the ethylene glycol (EG)‐containing Zn(CF3SO3)2 aqueous solution. The semi‐interpenetrating AF PVA‐CMC/Zn(CF3SO3)2 possesses enhanced mechanical properties, realizes the uniform zinc deposition, and impedes the dendrite growth. Notably, the interaction between PVA and EG suppresses the ice crystal formation and prevents freezing at −20 °C. Due to these advantages, the designed hydrogel owns high ionic conductivity of 1.73/0.75 S m−1 at 20/−20 °C with excellent tensile/compression strength at 20 °C. Impressively, the flexible AF quasi‐solid‐state ZHSC employing the hydrogel electrolyte achieves a superior energy density at 20/−20 °C (87.9/60.7 Wh kg−1). It maintains nearly 84.8% of the initial capacity after 10 000 cycles and a low self‐discharge rate (1.77 mV h−1) at 20 °C, together with great tolerance to corrosion. Moreover, this device demonstrates a stable electrochemical performance at −20 °C under deformation. The obtained results provide valuable insights for constructing durable hydrogel electrolytes in cold environments. A freeze‐tolerant hydrogel electrolyte of anti‐freezing polyvinyl alcohol‐carboxymethyl cellulose/Zn(CF3SO3)2 with a semi‐interpenetrating network is developed, which possesses high ionic conductivity, superior mechanical strength, and excellent ability of dendrite growth inhibition. With these advantages, the AF zinc‐ion hybrid supercapacitor constructed with this hydrogel electrolyte exhibits a high energy density of 87.9/60.7 Wh kg−1 at 20/−20 °C and exceptional durability.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202200055</identifier><identifier>PMID: 35274442</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>anti‐freezing ; Aqueous solutions ; Carboxymethyl cellulose ; Compressive strength ; Deformation ; Dendritic structure ; Electrochemical analysis ; Electrolytes ; Ethylene glycol ; Flux density ; Freezing ; hydrogel electrolytes ; Hydrogels ; Ice crystals ; Ice formation ; Ion currents ; mechanical performance ; Mechanical properties ; Nanotechnology ; Polyvinyl alcohol ; Supercapacitors ; Zinc ; zinc dendrites ; zinc‐ion hybrid supercapacitors</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-04, Vol.18 (16), p.e2200055-n/a</ispartof><rights>2022 The Authors. Small published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Small published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4135-96eb6debda710bbae38a05813dd7ca243b5bc64f9b7dbbe82a9d3fc461d4574f3</citedby><cites>FETCH-LOGICAL-c4135-96eb6debda710bbae38a05813dd7ca243b5bc64f9b7dbbe82a9d3fc461d4574f3</cites><orcidid>0000-0002-5558-2314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202200055$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202200055$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35274442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Xiaoqing</creatorcontrib><creatorcontrib>Ji, Chenchen</creatorcontrib><creatorcontrib>Meng, Qiangqiang</creatorcontrib><creatorcontrib>Mi, Hongyu</creatorcontrib><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Li, Zixiao</creatorcontrib><creatorcontrib>Yang, Nianjun</creatorcontrib><creatorcontrib>Qiu, Jieshan</creatorcontrib><title>Freeze‐Tolerant Hydrogel Electrolyte with High Strength for Stable Operation of Flexible Zinc‐Ion Hybrid Supercapacitors</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Constructing ionic conductive hydrogels with diversified properties is crucial for portable zinc‐ion hybrid supercapacitors (ZHSCs). Herein, a freeze‐tolerant hydrogel electrolyte (AF PVA‐CMC/Zn(CF3SO3)2) is developed by forming a semi‐interpenetrating anti‐freezing polyvinyl alcohol‐carboxymethyl cellulose (AF PVA‐CMC) network filled with the ethylene glycol (EG)‐containing Zn(CF3SO3)2 aqueous solution. The semi‐interpenetrating AF PVA‐CMC/Zn(CF3SO3)2 possesses enhanced mechanical properties, realizes the uniform zinc deposition, and impedes the dendrite growth. Notably, the interaction between PVA and EG suppresses the ice crystal formation and prevents freezing at −20 °C. Due to these advantages, the designed hydrogel owns high ionic conductivity of 1.73/0.75 S m−1 at 20/−20 °C with excellent tensile/compression strength at 20 °C. Impressively, the flexible AF quasi‐solid‐state ZHSC employing the hydrogel electrolyte achieves a superior energy density at 20/−20 °C (87.9/60.7 Wh kg−1). It maintains nearly 84.8% of the initial capacity after 10 000 cycles and a low self‐discharge rate (1.77 mV h−1) at 20 °C, together with great tolerance to corrosion. Moreover, this device demonstrates a stable electrochemical performance at −20 °C under deformation. The obtained results provide valuable insights for constructing durable hydrogel electrolytes in cold environments. A freeze‐tolerant hydrogel electrolyte of anti‐freezing polyvinyl alcohol‐carboxymethyl cellulose/Zn(CF3SO3)2 with a semi‐interpenetrating network is developed, which possesses high ionic conductivity, superior mechanical strength, and excellent ability of dendrite growth inhibition. With these advantages, the AF zinc‐ion hybrid supercapacitor constructed with this hydrogel electrolyte exhibits a high energy density of 87.9/60.7 Wh kg−1 at 20/−20 °C and exceptional durability.</description><subject>anti‐freezing</subject><subject>Aqueous solutions</subject><subject>Carboxymethyl cellulose</subject><subject>Compressive strength</subject><subject>Deformation</subject><subject>Dendritic structure</subject><subject>Electrochemical analysis</subject><subject>Electrolytes</subject><subject>Ethylene glycol</subject><subject>Flux density</subject><subject>Freezing</subject><subject>hydrogel electrolytes</subject><subject>Hydrogels</subject><subject>Ice crystals</subject><subject>Ice formation</subject><subject>Ion currents</subject><subject>mechanical performance</subject><subject>Mechanical properties</subject><subject>Nanotechnology</subject><subject>Polyvinyl alcohol</subject><subject>Supercapacitors</subject><subject>Zinc</subject><subject>zinc dendrites</subject><subject>zinc‐ion hybrid supercapacitors</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkctOGzEUhq2qqEDabZfIUjfdJPg2t2WFCEFKxSJh083IlzPByBmn9ozCVCz6CH1GnqSOAkFiw-pc9J1Pln-EvlIyoYSw87h2bsIIY4SQLPuATmhO-TgvWfXx0FNyjE5jvCeEUyaKT-iYZ6wQQrAT9DgNAH_g6e-_pXcQZNvh2WCCX4HDlw50F7wbOsBb293hmV3d4UUXoF2lqfEhDVI5wDebdNpZ32Lf4KmDB7vb_rKtTuLrtJ4NKliDF30CtdxIbTsf4md01EgX4ctzHaHb6eXyYjae31xdX_yYj7WgPBtXOajcgDKyoEQpCbyUJCspN6bQkgmuMqVz0VSqMEpByWRleKNFTo3ICtHwEfq-926C_91D7Oq1jRqcky34PtYs52VBs7IsE_rtDXrv-9Cm1yUq_VpOBWWJmuwpHXyMAZp6E-xahqGmpN7lUu9yqQ-5pIOzZ22v1mAO-EsQCaj2wNY6GN7R1Yuf8_mr_D_3iJ36</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Zhu, Xiaoqing</creator><creator>Ji, Chenchen</creator><creator>Meng, Qiangqiang</creator><creator>Mi, Hongyu</creator><creator>Yang, Qi</creator><creator>Li, Zixiao</creator><creator>Yang, Nianjun</creator><creator>Qiu, Jieshan</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5558-2314</orcidid></search><sort><creationdate>20220401</creationdate><title>Freeze‐Tolerant Hydrogel Electrolyte with High Strength for Stable Operation of Flexible Zinc‐Ion Hybrid Supercapacitors</title><author>Zhu, Xiaoqing ; Ji, Chenchen ; Meng, Qiangqiang ; Mi, Hongyu ; Yang, Qi ; Li, Zixiao ; Yang, Nianjun ; Qiu, Jieshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4135-96eb6debda710bbae38a05813dd7ca243b5bc64f9b7dbbe82a9d3fc461d4574f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>anti‐freezing</topic><topic>Aqueous solutions</topic><topic>Carboxymethyl cellulose</topic><topic>Compressive strength</topic><topic>Deformation</topic><topic>Dendritic structure</topic><topic>Electrochemical analysis</topic><topic>Electrolytes</topic><topic>Ethylene glycol</topic><topic>Flux density</topic><topic>Freezing</topic><topic>hydrogel electrolytes</topic><topic>Hydrogels</topic><topic>Ice crystals</topic><topic>Ice formation</topic><topic>Ion currents</topic><topic>mechanical performance</topic><topic>Mechanical properties</topic><topic>Nanotechnology</topic><topic>Polyvinyl alcohol</topic><topic>Supercapacitors</topic><topic>Zinc</topic><topic>zinc dendrites</topic><topic>zinc‐ion hybrid supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xiaoqing</creatorcontrib><creatorcontrib>Ji, Chenchen</creatorcontrib><creatorcontrib>Meng, Qiangqiang</creatorcontrib><creatorcontrib>Mi, Hongyu</creatorcontrib><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Li, Zixiao</creatorcontrib><creatorcontrib>Yang, Nianjun</creatorcontrib><creatorcontrib>Qiu, Jieshan</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xiaoqing</au><au>Ji, Chenchen</au><au>Meng, Qiangqiang</au><au>Mi, Hongyu</au><au>Yang, Qi</au><au>Li, Zixiao</au><au>Yang, Nianjun</au><au>Qiu, Jieshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Freeze‐Tolerant Hydrogel Electrolyte with High Strength for Stable Operation of Flexible Zinc‐Ion Hybrid Supercapacitors</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>18</volume><issue>16</issue><spage>e2200055</spage><epage>n/a</epage><pages>e2200055-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Constructing ionic conductive hydrogels with diversified properties is crucial for portable zinc‐ion hybrid supercapacitors (ZHSCs). Herein, a freeze‐tolerant hydrogel electrolyte (AF PVA‐CMC/Zn(CF3SO3)2) is developed by forming a semi‐interpenetrating anti‐freezing polyvinyl alcohol‐carboxymethyl cellulose (AF PVA‐CMC) network filled with the ethylene glycol (EG)‐containing Zn(CF3SO3)2 aqueous solution. The semi‐interpenetrating AF PVA‐CMC/Zn(CF3SO3)2 possesses enhanced mechanical properties, realizes the uniform zinc deposition, and impedes the dendrite growth. Notably, the interaction between PVA and EG suppresses the ice crystal formation and prevents freezing at −20 °C. Due to these advantages, the designed hydrogel owns high ionic conductivity of 1.73/0.75 S m−1 at 20/−20 °C with excellent tensile/compression strength at 20 °C. Impressively, the flexible AF quasi‐solid‐state ZHSC employing the hydrogel electrolyte achieves a superior energy density at 20/−20 °C (87.9/60.7 Wh kg−1). It maintains nearly 84.8% of the initial capacity after 10 000 cycles and a low self‐discharge rate (1.77 mV h−1) at 20 °C, together with great tolerance to corrosion. Moreover, this device demonstrates a stable electrochemical performance at −20 °C under deformation. The obtained results provide valuable insights for constructing durable hydrogel electrolytes in cold environments. A freeze‐tolerant hydrogel electrolyte of anti‐freezing polyvinyl alcohol‐carboxymethyl cellulose/Zn(CF3SO3)2 with a semi‐interpenetrating network is developed, which possesses high ionic conductivity, superior mechanical strength, and excellent ability of dendrite growth inhibition. With these advantages, the AF zinc‐ion hybrid supercapacitor constructed with this hydrogel electrolyte exhibits a high energy density of 87.9/60.7 Wh kg−1 at 20/−20 °C and exceptional durability.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35274442</pmid><doi>10.1002/smll.202200055</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5558-2314</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2022-04, Vol.18 (16), p.e2200055-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2638715888
source Wiley-Blackwell Journals
subjects anti‐freezing
Aqueous solutions
Carboxymethyl cellulose
Compressive strength
Deformation
Dendritic structure
Electrochemical analysis
Electrolytes
Ethylene glycol
Flux density
Freezing
hydrogel electrolytes
Hydrogels
Ice crystals
Ice formation
Ion currents
mechanical performance
Mechanical properties
Nanotechnology
Polyvinyl alcohol
Supercapacitors
Zinc
zinc dendrites
zinc‐ion hybrid supercapacitors
title Freeze‐Tolerant Hydrogel Electrolyte with High Strength for Stable Operation of Flexible Zinc‐Ion Hybrid Supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A33%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Freeze%E2%80%90Tolerant%20Hydrogel%20Electrolyte%20with%20High%20Strength%20for%20Stable%20Operation%20of%20Flexible%20Zinc%E2%80%90Ion%20Hybrid%20Supercapacitors&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhu,%20Xiaoqing&rft.date=2022-04-01&rft.volume=18&rft.issue=16&rft.spage=e2200055&rft.epage=n/a&rft.pages=e2200055-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202200055&rft_dat=%3Cproquest_cross%3E2652761412%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652761412&rft_id=info:pmid/35274442&rfr_iscdi=true