Quantum-Memory-Enhanced Preparation of Nonlocal Graph States

Graph states are an important class of multipartite entangled states. Previous experimental generation of graph states and in particular the Greenberger-Horne-Zeilinger (GHZ) states in linear optics quantum information schemes is subjected to an exponential decay in efficiency versus the system size...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2022-02, Vol.128 (8), p.080501-080501, Article 080501
Hauptverfasser: Zhang, Sheng, Wu, Yu-Kai, Li, Chang, Jiang, Nan, Pu, Yun-Fei, Duan, Lu-Ming
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 080501
container_issue 8
container_start_page 080501
container_title Physical review letters
container_volume 128
creator Zhang, Sheng
Wu, Yu-Kai
Li, Chang
Jiang, Nan
Pu, Yun-Fei
Duan, Lu-Ming
description Graph states are an important class of multipartite entangled states. Previous experimental generation of graph states and in particular the Greenberger-Horne-Zeilinger (GHZ) states in linear optics quantum information schemes is subjected to an exponential decay in efficiency versus the system size, which limits its large-scale applications in quantum networks. Here, we demonstrate an efficient scheme to prepare graph states with only a polynomial overhead using long-lived atomic quantum memories. We generate atom-photon entangled states in two atomic ensembles asynchronously, retrieve the stored atomic excitations only when both sides succeed, and further project them into a four-photon GHZ state. We measure the fidelity of this GHZ state and further demonstrate its applications in the violation of Bell-type inequalities and in quantum cryptography. Our work demonstrates the prospect of efficient generation of multipartite entangled states in large-scale distributed systems with applications in quantum information processing and metrology.
doi_str_mv 10.1103/PhysRevLett.128.080501
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2638712438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638712438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-231a84973fa623ecfc9ab4457dc26e96b29d771529daea5ccd9deae8c49d63983</originalsourceid><addsrcrecordid>eNpN0F9LwzAUBfAgipvTrzD66EtnbtImDfgiQ6cwdf57Dll6yyZtU5NU2Ld3Y1N8Oi_n3As_QsZAJwCUXy1Wm_CK33OMcQKsmNCC5hSOyBCoVKkEyI7JkFIOqaJUDshZCJ-UUmCiOCUDnjOZC5ENyfVLb9rYN-kjNs5v0tt2ZVqLZbLw2Blv4tq1iauSJ9fWzpo6mXnTrZK3aCKGc3JSmTrgxSFH5OPu9n16n86fZw_Tm3lqOUBMGQdTZEryygjG0VZWmWWW5bK0TKASS6ZKKSHfhkGTW1uqEg0WNlOl4KrgI3K5v9t599VjiLpZB4t1bVp0fdBM8EICy_iuKvZV610IHivd-XVj_EYD1Ts5_U9Ob-X0Xm47HB9-9MsGy7_ZLxX_AQuwbPM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638712438</pqid></control><display><type>article</type><title>Quantum-Memory-Enhanced Preparation of Nonlocal Graph States</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Sheng ; Wu, Yu-Kai ; Li, Chang ; Jiang, Nan ; Pu, Yun-Fei ; Duan, Lu-Ming</creator><creatorcontrib>Zhang, Sheng ; Wu, Yu-Kai ; Li, Chang ; Jiang, Nan ; Pu, Yun-Fei ; Duan, Lu-Ming</creatorcontrib><description>Graph states are an important class of multipartite entangled states. Previous experimental generation of graph states and in particular the Greenberger-Horne-Zeilinger (GHZ) states in linear optics quantum information schemes is subjected to an exponential decay in efficiency versus the system size, which limits its large-scale applications in quantum networks. Here, we demonstrate an efficient scheme to prepare graph states with only a polynomial overhead using long-lived atomic quantum memories. We generate atom-photon entangled states in two atomic ensembles asynchronously, retrieve the stored atomic excitations only when both sides succeed, and further project them into a four-photon GHZ state. We measure the fidelity of this GHZ state and further demonstrate its applications in the violation of Bell-type inequalities and in quantum cryptography. Our work demonstrates the prospect of efficient generation of multipartite entangled states in large-scale distributed systems with applications in quantum information processing and metrology.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.128.080501</identifier><identifier>PMID: 35275664</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2022-02, Vol.128 (8), p.080501-080501, Article 080501</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-231a84973fa623ecfc9ab4457dc26e96b29d771529daea5ccd9deae8c49d63983</citedby><cites>FETCH-LOGICAL-c311t-231a84973fa623ecfc9ab4457dc26e96b29d771529daea5ccd9deae8c49d63983</cites><orcidid>0000-0002-0248-3267 ; 0000-0002-5317-4966 ; 0000-0003-2184-7553 ; 0000-0003-1988-8313</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35275664$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Sheng</creatorcontrib><creatorcontrib>Wu, Yu-Kai</creatorcontrib><creatorcontrib>Li, Chang</creatorcontrib><creatorcontrib>Jiang, Nan</creatorcontrib><creatorcontrib>Pu, Yun-Fei</creatorcontrib><creatorcontrib>Duan, Lu-Ming</creatorcontrib><title>Quantum-Memory-Enhanced Preparation of Nonlocal Graph States</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Graph states are an important class of multipartite entangled states. Previous experimental generation of graph states and in particular the Greenberger-Horne-Zeilinger (GHZ) states in linear optics quantum information schemes is subjected to an exponential decay in efficiency versus the system size, which limits its large-scale applications in quantum networks. Here, we demonstrate an efficient scheme to prepare graph states with only a polynomial overhead using long-lived atomic quantum memories. We generate atom-photon entangled states in two atomic ensembles asynchronously, retrieve the stored atomic excitations only when both sides succeed, and further project them into a four-photon GHZ state. We measure the fidelity of this GHZ state and further demonstrate its applications in the violation of Bell-type inequalities and in quantum cryptography. Our work demonstrates the prospect of efficient generation of multipartite entangled states in large-scale distributed systems with applications in quantum information processing and metrology.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpN0F9LwzAUBfAgipvTrzD66EtnbtImDfgiQ6cwdf57Dll6yyZtU5NU2Ld3Y1N8Oi_n3As_QsZAJwCUXy1Wm_CK33OMcQKsmNCC5hSOyBCoVKkEyI7JkFIOqaJUDshZCJ-UUmCiOCUDnjOZC5ENyfVLb9rYN-kjNs5v0tt2ZVqLZbLw2Blv4tq1iauSJ9fWzpo6mXnTrZK3aCKGc3JSmTrgxSFH5OPu9n16n86fZw_Tm3lqOUBMGQdTZEryygjG0VZWmWWW5bK0TKASS6ZKKSHfhkGTW1uqEg0WNlOl4KrgI3K5v9t599VjiLpZB4t1bVp0fdBM8EICy_iuKvZV610IHivd-XVj_EYD1Ts5_U9Ob-X0Xm47HB9-9MsGy7_ZLxX_AQuwbPM</recordid><startdate>20220225</startdate><enddate>20220225</enddate><creator>Zhang, Sheng</creator><creator>Wu, Yu-Kai</creator><creator>Li, Chang</creator><creator>Jiang, Nan</creator><creator>Pu, Yun-Fei</creator><creator>Duan, Lu-Ming</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0248-3267</orcidid><orcidid>https://orcid.org/0000-0002-5317-4966</orcidid><orcidid>https://orcid.org/0000-0003-2184-7553</orcidid><orcidid>https://orcid.org/0000-0003-1988-8313</orcidid></search><sort><creationdate>20220225</creationdate><title>Quantum-Memory-Enhanced Preparation of Nonlocal Graph States</title><author>Zhang, Sheng ; Wu, Yu-Kai ; Li, Chang ; Jiang, Nan ; Pu, Yun-Fei ; Duan, Lu-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-231a84973fa623ecfc9ab4457dc26e96b29d771529daea5ccd9deae8c49d63983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Sheng</creatorcontrib><creatorcontrib>Wu, Yu-Kai</creatorcontrib><creatorcontrib>Li, Chang</creatorcontrib><creatorcontrib>Jiang, Nan</creatorcontrib><creatorcontrib>Pu, Yun-Fei</creatorcontrib><creatorcontrib>Duan, Lu-Ming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Sheng</au><au>Wu, Yu-Kai</au><au>Li, Chang</au><au>Jiang, Nan</au><au>Pu, Yun-Fei</au><au>Duan, Lu-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum-Memory-Enhanced Preparation of Nonlocal Graph States</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2022-02-25</date><risdate>2022</risdate><volume>128</volume><issue>8</issue><spage>080501</spage><epage>080501</epage><pages>080501-080501</pages><artnum>080501</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Graph states are an important class of multipartite entangled states. Previous experimental generation of graph states and in particular the Greenberger-Horne-Zeilinger (GHZ) states in linear optics quantum information schemes is subjected to an exponential decay in efficiency versus the system size, which limits its large-scale applications in quantum networks. Here, we demonstrate an efficient scheme to prepare graph states with only a polynomial overhead using long-lived atomic quantum memories. We generate atom-photon entangled states in two atomic ensembles asynchronously, retrieve the stored atomic excitations only when both sides succeed, and further project them into a four-photon GHZ state. We measure the fidelity of this GHZ state and further demonstrate its applications in the violation of Bell-type inequalities and in quantum cryptography. Our work demonstrates the prospect of efficient generation of multipartite entangled states in large-scale distributed systems with applications in quantum information processing and metrology.</abstract><cop>United States</cop><pmid>35275664</pmid><doi>10.1103/PhysRevLett.128.080501</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0248-3267</orcidid><orcidid>https://orcid.org/0000-0002-5317-4966</orcidid><orcidid>https://orcid.org/0000-0003-2184-7553</orcidid><orcidid>https://orcid.org/0000-0003-1988-8313</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2022-02, Vol.128 (8), p.080501-080501, Article 080501
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2638712438
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Quantum-Memory-Enhanced Preparation of Nonlocal Graph States
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum-Memory-Enhanced%20Preparation%20of%20Nonlocal%20Graph%20States&rft.jtitle=Physical%20review%20letters&rft.au=Zhang,%20Sheng&rft.date=2022-02-25&rft.volume=128&rft.issue=8&rft.spage=080501&rft.epage=080501&rft.pages=080501-080501&rft.artnum=080501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.128.080501&rft_dat=%3Cproquest_cross%3E2638712438%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638712438&rft_id=info:pmid/35275664&rfr_iscdi=true