Manganese Cadmium Sulfide Nanoparticles Solid Solution on Cobalt Acid Nickel Nanoflakes: A Robust Photocatalyst for Hydrogen Evolution

Photocatalytic water splitting for hydrogen evolution is one of the most promising methods to mitigate environmental and energy‐related issues. In this study, manganese cadmium sulfide (MnxCd1‐xS) solid solution is used to construct a p–n heterostructure with NiCo2O4 through a hydrothermal method. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2022-05, Vol.15 (10), p.e202200288-n/a
Hauptverfasser: Feng, Ting, Li, Haiyan, Gao, Rongjie, Su, Ge, Wang, Wei, Dong, Bohua, Cao, Lixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page e202200288
container_title ChemSusChem
container_volume 15
creator Feng, Ting
Li, Haiyan
Gao, Rongjie
Su, Ge
Wang, Wei
Dong, Bohua
Cao, Lixin
description Photocatalytic water splitting for hydrogen evolution is one of the most promising methods to mitigate environmental and energy‐related issues. In this study, manganese cadmium sulfide (MnxCd1‐xS) solid solution is used to construct a p–n heterostructure with NiCo2O4 through a hydrothermal method. The Mn0.25Cd0.75S/NiCo2O4 composites are used for photocatalytic hydrogen evolution reaction, and the optimal hydrogen rate with 40 mg of Mn0.25Cd0.75S/NiCo2O4 40 mg (MCS/NCO 40) is 61159 μmol g−1 h−1, which is about 16.3 times than that of pure Mn0.25Cd0.75S. After combining with NiCo2O4, the light absorption scale, the separation efficiency of photogenerated carriers, and the reaction kinetics are enhanced. Moreover, the band offset of MCS/NCO composites is calculated by the core level alignment method, demonstrating the formation of a p–n heterostructure. The built‐in electric field from the p–n heterostructure drives charge transfer and enhances separation efficiency, which results in improved photocatalytic performance. Close to the edge: A Mn0.25Cd0.75S/NiCo2O4 p–n heterostructure is synthesized through a hydrothermal method and shows a high photocatalytic H2 evolution rate of 61159 μmol g−1 h−1. The band edge position is estimated by the core level alignment method, which affords a deeper understanding of the p–n heterostructure.
doi_str_mv 10.1002/cssc.202200288
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2638014241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666848725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3738-94f9aaabb81535324ed23bff97b61acb8e387952a1259103781061189e2b94e83</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhkNR-mVvvZSAN97smo-ZTOLdMtS2UKu4Cr0bksyZmjYzWZMZy_6B_u5m3XUFb4SQnBOe8xDyIvSakjklhL23Kdk5I4zlRsoDdEylKGalKG5f7GtOj9BJSveECKKEOERHvGRCcEKO0dMnPdzpARLgWre9m3q8nHznWsA3eggrHUdnPSS8DN61m30aXRhwXnUw2o94YfP9jbMP4H-PdF4_QPqAF_hrMFMa8ZcfYQxWj9qvc9eFiC_XbQx3MODzXzvfK_Sy0z7B2e48Rd8_nn-rL2fXny-u6sX1zPKKy5kqOqW1NkbSkpecFdAybrpOVUZQbY0ELitVMk1ZqSjhlaREUCoVMKMKkPwUvdt6VzH8nCCNTe-SBe_zF4QpNUxwSWjBCprRt_-g92GKQ35dpoSQhaxYman5lrIxpBSha1bR9TquG0qaTULNJqFmn1AeeLPTTqaHdo__iSQDags8Og_r_-iaerms_8qfAb8InWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666848725</pqid></control><display><type>article</type><title>Manganese Cadmium Sulfide Nanoparticles Solid Solution on Cobalt Acid Nickel Nanoflakes: A Robust Photocatalyst for Hydrogen Evolution</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Feng, Ting ; Li, Haiyan ; Gao, Rongjie ; Su, Ge ; Wang, Wei ; Dong, Bohua ; Cao, Lixin</creator><creatorcontrib>Feng, Ting ; Li, Haiyan ; Gao, Rongjie ; Su, Ge ; Wang, Wei ; Dong, Bohua ; Cao, Lixin</creatorcontrib><description>Photocatalytic water splitting for hydrogen evolution is one of the most promising methods to mitigate environmental and energy‐related issues. In this study, manganese cadmium sulfide (MnxCd1‐xS) solid solution is used to construct a p–n heterostructure with NiCo2O4 through a hydrothermal method. The Mn0.25Cd0.75S/NiCo2O4 composites are used for photocatalytic hydrogen evolution reaction, and the optimal hydrogen rate with 40 mg of Mn0.25Cd0.75S/NiCo2O4 40 mg (MCS/NCO 40) is 61159 μmol g−1 h−1, which is about 16.3 times than that of pure Mn0.25Cd0.75S. After combining with NiCo2O4, the light absorption scale, the separation efficiency of photogenerated carriers, and the reaction kinetics are enhanced. Moreover, the band offset of MCS/NCO composites is calculated by the core level alignment method, demonstrating the formation of a p–n heterostructure. The built‐in electric field from the p–n heterostructure drives charge transfer and enhances separation efficiency, which results in improved photocatalytic performance. Close to the edge: A Mn0.25Cd0.75S/NiCo2O4 p–n heterostructure is synthesized through a hydrothermal method and shows a high photocatalytic H2 evolution rate of 61159 μmol g−1 h−1. The band edge position is estimated by the core level alignment method, which affords a deeper understanding of the p–n heterostructure.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202200288</identifier><identifier>PMID: 35266300</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cadmium sulfide ; charge separation ; Charge transfer ; Composite materials ; Electric fields ; Electromagnetic absorption ; heterojunctions ; Heterostructures ; Hydrogen ; Hydrogen evolution reactions ; Manganese ; metal sulfides ; Nanoparticles ; Nickel compounds ; Photocatalysis ; Reaction kinetics ; Separation ; Solid solutions ; Water splitting</subject><ispartof>ChemSusChem, 2022-05, Vol.15 (10), p.e202200288-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3738-94f9aaabb81535324ed23bff97b61acb8e387952a1259103781061189e2b94e83</citedby><cites>FETCH-LOGICAL-c3738-94f9aaabb81535324ed23bff97b61acb8e387952a1259103781061189e2b94e83</cites><orcidid>0000-0002-0917-0204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.202200288$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.202200288$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35266300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Ting</creatorcontrib><creatorcontrib>Li, Haiyan</creatorcontrib><creatorcontrib>Gao, Rongjie</creatorcontrib><creatorcontrib>Su, Ge</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Dong, Bohua</creatorcontrib><creatorcontrib>Cao, Lixin</creatorcontrib><title>Manganese Cadmium Sulfide Nanoparticles Solid Solution on Cobalt Acid Nickel Nanoflakes: A Robust Photocatalyst for Hydrogen Evolution</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Photocatalytic water splitting for hydrogen evolution is one of the most promising methods to mitigate environmental and energy‐related issues. In this study, manganese cadmium sulfide (MnxCd1‐xS) solid solution is used to construct a p–n heterostructure with NiCo2O4 through a hydrothermal method. The Mn0.25Cd0.75S/NiCo2O4 composites are used for photocatalytic hydrogen evolution reaction, and the optimal hydrogen rate with 40 mg of Mn0.25Cd0.75S/NiCo2O4 40 mg (MCS/NCO 40) is 61159 μmol g−1 h−1, which is about 16.3 times than that of pure Mn0.25Cd0.75S. After combining with NiCo2O4, the light absorption scale, the separation efficiency of photogenerated carriers, and the reaction kinetics are enhanced. Moreover, the band offset of MCS/NCO composites is calculated by the core level alignment method, demonstrating the formation of a p–n heterostructure. The built‐in electric field from the p–n heterostructure drives charge transfer and enhances separation efficiency, which results in improved photocatalytic performance. Close to the edge: A Mn0.25Cd0.75S/NiCo2O4 p–n heterostructure is synthesized through a hydrothermal method and shows a high photocatalytic H2 evolution rate of 61159 μmol g−1 h−1. The band edge position is estimated by the core level alignment method, which affords a deeper understanding of the p–n heterostructure.</description><subject>Cadmium sulfide</subject><subject>charge separation</subject><subject>Charge transfer</subject><subject>Composite materials</subject><subject>Electric fields</subject><subject>Electromagnetic absorption</subject><subject>heterojunctions</subject><subject>Heterostructures</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Manganese</subject><subject>metal sulfides</subject><subject>Nanoparticles</subject><subject>Nickel compounds</subject><subject>Photocatalysis</subject><subject>Reaction kinetics</subject><subject>Separation</subject><subject>Solid solutions</subject><subject>Water splitting</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkV1rFDEUhkNR-mVvvZSAN97smo-ZTOLdMtS2UKu4Cr0bksyZmjYzWZMZy_6B_u5m3XUFb4SQnBOe8xDyIvSakjklhL23Kdk5I4zlRsoDdEylKGalKG5f7GtOj9BJSveECKKEOERHvGRCcEKO0dMnPdzpARLgWre9m3q8nHznWsA3eggrHUdnPSS8DN61m30aXRhwXnUw2o94YfP9jbMP4H-PdF4_QPqAF_hrMFMa8ZcfYQxWj9qvc9eFiC_XbQx3MODzXzvfK_Sy0z7B2e48Rd8_nn-rL2fXny-u6sX1zPKKy5kqOqW1NkbSkpecFdAybrpOVUZQbY0ELitVMk1ZqSjhlaREUCoVMKMKkPwUvdt6VzH8nCCNTe-SBe_zF4QpNUxwSWjBCprRt_-g92GKQ35dpoSQhaxYman5lrIxpBSha1bR9TquG0qaTULNJqFmn1AeeLPTTqaHdo__iSQDags8Og_r_-iaerms_8qfAb8InWw</recordid><startdate>20220520</startdate><enddate>20220520</enddate><creator>Feng, Ting</creator><creator>Li, Haiyan</creator><creator>Gao, Rongjie</creator><creator>Su, Ge</creator><creator>Wang, Wei</creator><creator>Dong, Bohua</creator><creator>Cao, Lixin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0917-0204</orcidid></search><sort><creationdate>20220520</creationdate><title>Manganese Cadmium Sulfide Nanoparticles Solid Solution on Cobalt Acid Nickel Nanoflakes: A Robust Photocatalyst for Hydrogen Evolution</title><author>Feng, Ting ; Li, Haiyan ; Gao, Rongjie ; Su, Ge ; Wang, Wei ; Dong, Bohua ; Cao, Lixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3738-94f9aaabb81535324ed23bff97b61acb8e387952a1259103781061189e2b94e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cadmium sulfide</topic><topic>charge separation</topic><topic>Charge transfer</topic><topic>Composite materials</topic><topic>Electric fields</topic><topic>Electromagnetic absorption</topic><topic>heterojunctions</topic><topic>Heterostructures</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Manganese</topic><topic>metal sulfides</topic><topic>Nanoparticles</topic><topic>Nickel compounds</topic><topic>Photocatalysis</topic><topic>Reaction kinetics</topic><topic>Separation</topic><topic>Solid solutions</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Ting</creatorcontrib><creatorcontrib>Li, Haiyan</creatorcontrib><creatorcontrib>Gao, Rongjie</creatorcontrib><creatorcontrib>Su, Ge</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Dong, Bohua</creatorcontrib><creatorcontrib>Cao, Lixin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Ting</au><au>Li, Haiyan</au><au>Gao, Rongjie</au><au>Su, Ge</au><au>Wang, Wei</au><au>Dong, Bohua</au><au>Cao, Lixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manganese Cadmium Sulfide Nanoparticles Solid Solution on Cobalt Acid Nickel Nanoflakes: A Robust Photocatalyst for Hydrogen Evolution</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2022-05-20</date><risdate>2022</risdate><volume>15</volume><issue>10</issue><spage>e202200288</spage><epage>n/a</epage><pages>e202200288-n/a</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Photocatalytic water splitting for hydrogen evolution is one of the most promising methods to mitigate environmental and energy‐related issues. In this study, manganese cadmium sulfide (MnxCd1‐xS) solid solution is used to construct a p–n heterostructure with NiCo2O4 through a hydrothermal method. The Mn0.25Cd0.75S/NiCo2O4 composites are used for photocatalytic hydrogen evolution reaction, and the optimal hydrogen rate with 40 mg of Mn0.25Cd0.75S/NiCo2O4 40 mg (MCS/NCO 40) is 61159 μmol g−1 h−1, which is about 16.3 times than that of pure Mn0.25Cd0.75S. After combining with NiCo2O4, the light absorption scale, the separation efficiency of photogenerated carriers, and the reaction kinetics are enhanced. Moreover, the band offset of MCS/NCO composites is calculated by the core level alignment method, demonstrating the formation of a p–n heterostructure. The built‐in electric field from the p–n heterostructure drives charge transfer and enhances separation efficiency, which results in improved photocatalytic performance. Close to the edge: A Mn0.25Cd0.75S/NiCo2O4 p–n heterostructure is synthesized through a hydrothermal method and shows a high photocatalytic H2 evolution rate of 61159 μmol g−1 h−1. The band edge position is estimated by the core level alignment method, which affords a deeper understanding of the p–n heterostructure.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35266300</pmid><doi>10.1002/cssc.202200288</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0917-0204</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2022-05, Vol.15 (10), p.e202200288-n/a
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_miscellaneous_2638014241
source Wiley Online Library Journals Frontfile Complete
subjects Cadmium sulfide
charge separation
Charge transfer
Composite materials
Electric fields
Electromagnetic absorption
heterojunctions
Heterostructures
Hydrogen
Hydrogen evolution reactions
Manganese
metal sulfides
Nanoparticles
Nickel compounds
Photocatalysis
Reaction kinetics
Separation
Solid solutions
Water splitting
title Manganese Cadmium Sulfide Nanoparticles Solid Solution on Cobalt Acid Nickel Nanoflakes: A Robust Photocatalyst for Hydrogen Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manganese%20Cadmium%20Sulfide%20Nanoparticles%20Solid%20Solution%20on%20Cobalt%20Acid%20Nickel%20Nanoflakes:%20A%20Robust%20Photocatalyst%20for%20Hydrogen%20Evolution&rft.jtitle=ChemSusChem&rft.au=Feng,%20Ting&rft.date=2022-05-20&rft.volume=15&rft.issue=10&rft.spage=e202200288&rft.epage=n/a&rft.pages=e202200288-n/a&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202200288&rft_dat=%3Cproquest_cross%3E2666848725%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666848725&rft_id=info:pmid/35266300&rfr_iscdi=true