Thyroid Hormone Disruption by Organophosphate Esters Is Mediated by Nuclear/Membrane Thyroid Hormone Receptors: In Vitro, In Vivo, and In Silico Studies

Earlier mechanistic studies of many prohibited flame retardants (FRs) highlighted their thyroid hormone-disrupting activity through nuclear thyroid hormone receptors (nTRs), whereas some alternative FRs such as organophosphate esters (OPEs) exerted weak nTR-disrupting effects. However, an increasing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2022-04, Vol.56 (7), p.4241-4250
Hauptverfasser: Li, Jian, Xu, Ying, Li, Na, Zuo, Rui, Zhai, Yuanzheng, Chen, Haiyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Earlier mechanistic studies of many prohibited flame retardants (FRs) highlighted their thyroid hormone-disrupting activity through nuclear thyroid hormone receptors (nTRs), whereas some alternative FRs such as organophosphate esters (OPEs) exerted weak nTR-disrupting effects. However, an increasing number of studies have revealed that OPEs also exert thyroid hormone-disrupting effects, and the underlying mechanism is unclear. Herein, the thyroid hormone-disrupting effects and mechanisms of 8 typical OPEs were investigated using integrated in vitro, in vivo, and in silico assays. All tested chemicals competitively bound to the membrane thyroid hormone receptor (mTR) [the 20% relative inhibitory concentration (RIC20): (3.5 ± 0.2) × 101 to (4.9 ± 1.0) × 107 nM], and Cl-OPEs and alkyl-OPEs had lower RIC20 values. In contrast, only 4 OPEs showed nTR antagonistic activities at higher concentrations [≥ (4.8 ± 0.8) × 103 nM]. Cl-OPEs and alkyl-OPEs preferentially interacted with mTR. Molecular docking illustrated that OPEs docked into mTRs, consistent with the competitive binding assay. In vivo analyses of zebrafish embryonic development confirmed that tris­(1,3-dichloro-2-propyl) phosphate induced inappropriate expression of proteins, and these protein interactions might be associated with mTR according to the quantitative proteomic analysis. Based on the results, mTR might play a critical role in mediating the thyroid hormone-disrupting effects of OPEs.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.1c05956