The effect of nonlocal interactions on the dynamics of the Ginzburg-Landau equation

Nonlocal amplitude equations of the complex Ginzburg-Landau type arise in a few physical contexts, such as in ferromagnetic systems. In this paper, we study the effect of the nonlocal term on the global dynamics by considering a model nonlocal complex amplitude equation. We discuss the global existe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 1996-05, Vol.47 (3), p.432-455
Hauptverfasser: Duan, Jinqiao, Ly, Hung, Titi, Edriss S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 455
container_issue 3
container_start_page 432
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 47
creator Duan, Jinqiao
Ly, Hung
Titi, Edriss S.
description Nonlocal amplitude equations of the complex Ginzburg-Landau type arise in a few physical contexts, such as in ferromagnetic systems. In this paper, we study the effect of the nonlocal term on the global dynamics by considering a model nonlocal complex amplitude equation. We discuss the global existence, uniqueness, and regularity of solutions to this equation. We prove the existence of the global attractor and of a finite dimensional inertial manifold. We provide upper and lower bounds to their dimensions, and compare them with those of the cubic complex Ginzburg-Landau equation. It is observed that the nonlocal term plays a stabilizing or destabilizing role depending on the sign of the real part of its coefficient. Moreover, the nonlocal term affects not only the diameter of the attractor but also its dimension. (Author)
doi_str_mv 10.1007/BF00916648
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26371024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26371024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-c16cc304588640ecfabc0abf68a2e8c613648782fe109f3f3f52a61c73a62d863</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMoWKsXP0FOHoTVyZ9ms0cttgoFD9bzMp0murJNbLJ7qJ_eXSrIHB4Dv_fgPcauBdwJgPL-cQFQCWO0PWEToSUUFajqlE0AtC6kLGfn7CLnLxhgAWrC3tafjjvvHXU8eh5iaCNhy5vQuYTUNTFkHgPvBmx7CLhrKI_g-C-b8LPp00exwrDFnrt9j6Phkp15bLO7-tMpe188refPxep1-TJ_WBUkDXQFCUOkQM-sNRocedwQ4MYbi9JZMkINNUorvRNQeTXcTKIRVCo0cmuNmrKbY-53ivve5a7eNZlc22Jwsc-1NGooKfUA3h5BSjHn5Hz9nZodpkMtoB53q_93U7_0s1-Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26371024</pqid></control><display><type>article</type><title>The effect of nonlocal interactions on the dynamics of the Ginzburg-Landau equation</title><source>SpringerLink Journals</source><creator>Duan, Jinqiao ; Ly, Hung ; Titi, Edriss S.</creator><creatorcontrib>Duan, Jinqiao ; Ly, Hung ; Titi, Edriss S.</creatorcontrib><description>Nonlocal amplitude equations of the complex Ginzburg-Landau type arise in a few physical contexts, such as in ferromagnetic systems. In this paper, we study the effect of the nonlocal term on the global dynamics by considering a model nonlocal complex amplitude equation. We discuss the global existence, uniqueness, and regularity of solutions to this equation. We prove the existence of the global attractor and of a finite dimensional inertial manifold. We provide upper and lower bounds to their dimensions, and compare them with those of the cubic complex Ginzburg-Landau equation. It is observed that the nonlocal term plays a stabilizing or destabilizing role depending on the sign of the real part of its coefficient. Moreover, the nonlocal term affects not only the diameter of the attractor but also its dimension. (Author)</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/BF00916648</identifier><language>eng</language><ispartof>Zeitschrift für angewandte Mathematik und Physik, 1996-05, Vol.47 (3), p.432-455</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-c16cc304588640ecfabc0abf68a2e8c613648782fe109f3f3f52a61c73a62d863</citedby><cites>FETCH-LOGICAL-c260t-c16cc304588640ecfabc0abf68a2e8c613648782fe109f3f3f52a61c73a62d863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Duan, Jinqiao</creatorcontrib><creatorcontrib>Ly, Hung</creatorcontrib><creatorcontrib>Titi, Edriss S.</creatorcontrib><title>The effect of nonlocal interactions on the dynamics of the Ginzburg-Landau equation</title><title>Zeitschrift für angewandte Mathematik und Physik</title><description>Nonlocal amplitude equations of the complex Ginzburg-Landau type arise in a few physical contexts, such as in ferromagnetic systems. In this paper, we study the effect of the nonlocal term on the global dynamics by considering a model nonlocal complex amplitude equation. We discuss the global existence, uniqueness, and regularity of solutions to this equation. We prove the existence of the global attractor and of a finite dimensional inertial manifold. We provide upper and lower bounds to their dimensions, and compare them with those of the cubic complex Ginzburg-Landau equation. It is observed that the nonlocal term plays a stabilizing or destabilizing role depending on the sign of the real part of its coefficient. Moreover, the nonlocal term affects not only the diameter of the attractor but also its dimension. (Author)</description><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEQxYMoWKsXP0FOHoTVyZ9ms0cttgoFD9bzMp0murJNbLJ7qJ_eXSrIHB4Dv_fgPcauBdwJgPL-cQFQCWO0PWEToSUUFajqlE0AtC6kLGfn7CLnLxhgAWrC3tafjjvvHXU8eh5iaCNhy5vQuYTUNTFkHgPvBmx7CLhrKI_g-C-b8LPp00exwrDFnrt9j6Phkp15bLO7-tMpe188refPxep1-TJ_WBUkDXQFCUOkQM-sNRocedwQ4MYbi9JZMkINNUorvRNQeTXcTKIRVCo0cmuNmrKbY-53ivve5a7eNZlc22Jwsc-1NGooKfUA3h5BSjHn5Hz9nZodpkMtoB53q_93U7_0s1-Y</recordid><startdate>19960501</startdate><enddate>19960501</enddate><creator>Duan, Jinqiao</creator><creator>Ly, Hung</creator><creator>Titi, Edriss S.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19960501</creationdate><title>The effect of nonlocal interactions on the dynamics of the Ginzburg-Landau equation</title><author>Duan, Jinqiao ; Ly, Hung ; Titi, Edriss S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-c16cc304588640ecfabc0abf68a2e8c613648782fe109f3f3f52a61c73a62d863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Jinqiao</creatorcontrib><creatorcontrib>Ly, Hung</creatorcontrib><creatorcontrib>Titi, Edriss S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Jinqiao</au><au>Ly, Hung</au><au>Titi, Edriss S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of nonlocal interactions on the dynamics of the Ginzburg-Landau equation</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><date>1996-05-01</date><risdate>1996</risdate><volume>47</volume><issue>3</issue><spage>432</spage><epage>455</epage><pages>432-455</pages><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>Nonlocal amplitude equations of the complex Ginzburg-Landau type arise in a few physical contexts, such as in ferromagnetic systems. In this paper, we study the effect of the nonlocal term on the global dynamics by considering a model nonlocal complex amplitude equation. We discuss the global existence, uniqueness, and regularity of solutions to this equation. We prove the existence of the global attractor and of a finite dimensional inertial manifold. We provide upper and lower bounds to their dimensions, and compare them with those of the cubic complex Ginzburg-Landau equation. It is observed that the nonlocal term plays a stabilizing or destabilizing role depending on the sign of the real part of its coefficient. Moreover, the nonlocal term affects not only the diameter of the attractor but also its dimension. (Author)</abstract><doi>10.1007/BF00916648</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 1996-05, Vol.47 (3), p.432-455
issn 0044-2275
1420-9039
language eng
recordid cdi_proquest_miscellaneous_26371024
source SpringerLink Journals
title The effect of nonlocal interactions on the dynamics of the Ginzburg-Landau equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20nonlocal%20interactions%20on%20the%20dynamics%20of%20the%20Ginzburg-Landau%20equation&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Duan,%20Jinqiao&rft.date=1996-05-01&rft.volume=47&rft.issue=3&rft.spage=432&rft.epage=455&rft.pages=432-455&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/BF00916648&rft_dat=%3Cproquest_cross%3E26371024%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26371024&rft_id=info:pmid/&rfr_iscdi=true