The effect of nonlocal interactions on the dynamics of the Ginzburg-Landau equation
Nonlocal amplitude equations of the complex Ginzburg-Landau type arise in a few physical contexts, such as in ferromagnetic systems. In this paper, we study the effect of the nonlocal term on the global dynamics by considering a model nonlocal complex amplitude equation. We discuss the global existe...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 1996-05, Vol.47 (3), p.432-455 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 455 |
---|---|
container_issue | 3 |
container_start_page | 432 |
container_title | Zeitschrift für angewandte Mathematik und Physik |
container_volume | 47 |
creator | Duan, Jinqiao Ly, Hung Titi, Edriss S. |
description | Nonlocal amplitude equations of the complex Ginzburg-Landau type arise in a few physical contexts, such as in ferromagnetic systems. In this paper, we study the effect of the nonlocal term on the global dynamics by considering a model nonlocal complex amplitude equation. We discuss the global existence, uniqueness, and regularity of solutions to this equation. We prove the existence of the global attractor and of a finite dimensional inertial manifold. We provide upper and lower bounds to their dimensions, and compare them with those of the cubic complex Ginzburg-Landau equation. It is observed that the nonlocal term plays a stabilizing or destabilizing role depending on the sign of the real part of its coefficient. Moreover, the nonlocal term affects not only the diameter of the attractor but also its dimension. (Author) |
doi_str_mv | 10.1007/BF00916648 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26371024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26371024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-c16cc304588640ecfabc0abf68a2e8c613648782fe109f3f3f52a61c73a62d863</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMoWKsXP0FOHoTVyZ9ms0cttgoFD9bzMp0murJNbLJ7qJ_eXSrIHB4Dv_fgPcauBdwJgPL-cQFQCWO0PWEToSUUFajqlE0AtC6kLGfn7CLnLxhgAWrC3tafjjvvHXU8eh5iaCNhy5vQuYTUNTFkHgPvBmx7CLhrKI_g-C-b8LPp00exwrDFnrt9j6Phkp15bLO7-tMpe188refPxep1-TJ_WBUkDXQFCUOkQM-sNRocedwQ4MYbi9JZMkINNUorvRNQeTXcTKIRVCo0cmuNmrKbY-53ivve5a7eNZlc22Jwsc-1NGooKfUA3h5BSjHn5Hz9nZodpkMtoB53q_93U7_0s1-Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26371024</pqid></control><display><type>article</type><title>The effect of nonlocal interactions on the dynamics of the Ginzburg-Landau equation</title><source>SpringerLink Journals</source><creator>Duan, Jinqiao ; Ly, Hung ; Titi, Edriss S.</creator><creatorcontrib>Duan, Jinqiao ; Ly, Hung ; Titi, Edriss S.</creatorcontrib><description>Nonlocal amplitude equations of the complex Ginzburg-Landau type arise in a few physical contexts, such as in ferromagnetic systems. In this paper, we study the effect of the nonlocal term on the global dynamics by considering a model nonlocal complex amplitude equation. We discuss the global existence, uniqueness, and regularity of solutions to this equation. We prove the existence of the global attractor and of a finite dimensional inertial manifold. We provide upper and lower bounds to their dimensions, and compare them with those of the cubic complex Ginzburg-Landau equation. It is observed that the nonlocal term plays a stabilizing or destabilizing role depending on the sign of the real part of its coefficient. Moreover, the nonlocal term affects not only the diameter of the attractor but also its dimension. (Author)</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/BF00916648</identifier><language>eng</language><ispartof>Zeitschrift für angewandte Mathematik und Physik, 1996-05, Vol.47 (3), p.432-455</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-c16cc304588640ecfabc0abf68a2e8c613648782fe109f3f3f52a61c73a62d863</citedby><cites>FETCH-LOGICAL-c260t-c16cc304588640ecfabc0abf68a2e8c613648782fe109f3f3f52a61c73a62d863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Duan, Jinqiao</creatorcontrib><creatorcontrib>Ly, Hung</creatorcontrib><creatorcontrib>Titi, Edriss S.</creatorcontrib><title>The effect of nonlocal interactions on the dynamics of the Ginzburg-Landau equation</title><title>Zeitschrift für angewandte Mathematik und Physik</title><description>Nonlocal amplitude equations of the complex Ginzburg-Landau type arise in a few physical contexts, such as in ferromagnetic systems. In this paper, we study the effect of the nonlocal term on the global dynamics by considering a model nonlocal complex amplitude equation. We discuss the global existence, uniqueness, and regularity of solutions to this equation. We prove the existence of the global attractor and of a finite dimensional inertial manifold. We provide upper and lower bounds to their dimensions, and compare them with those of the cubic complex Ginzburg-Landau equation. It is observed that the nonlocal term plays a stabilizing or destabilizing role depending on the sign of the real part of its coefficient. Moreover, the nonlocal term affects not only the diameter of the attractor but also its dimension. (Author)</description><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEQxYMoWKsXP0FOHoTVyZ9ms0cttgoFD9bzMp0murJNbLJ7qJ_eXSrIHB4Dv_fgPcauBdwJgPL-cQFQCWO0PWEToSUUFajqlE0AtC6kLGfn7CLnLxhgAWrC3tafjjvvHXU8eh5iaCNhy5vQuYTUNTFkHgPvBmx7CLhrKI_g-C-b8LPp00exwrDFnrt9j6Phkp15bLO7-tMpe188refPxep1-TJ_WBUkDXQFCUOkQM-sNRocedwQ4MYbi9JZMkINNUorvRNQeTXcTKIRVCo0cmuNmrKbY-53ivve5a7eNZlc22Jwsc-1NGooKfUA3h5BSjHn5Hz9nZodpkMtoB53q_93U7_0s1-Y</recordid><startdate>19960501</startdate><enddate>19960501</enddate><creator>Duan, Jinqiao</creator><creator>Ly, Hung</creator><creator>Titi, Edriss S.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19960501</creationdate><title>The effect of nonlocal interactions on the dynamics of the Ginzburg-Landau equation</title><author>Duan, Jinqiao ; Ly, Hung ; Titi, Edriss S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-c16cc304588640ecfabc0abf68a2e8c613648782fe109f3f3f52a61c73a62d863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Jinqiao</creatorcontrib><creatorcontrib>Ly, Hung</creatorcontrib><creatorcontrib>Titi, Edriss S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Jinqiao</au><au>Ly, Hung</au><au>Titi, Edriss S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of nonlocal interactions on the dynamics of the Ginzburg-Landau equation</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><date>1996-05-01</date><risdate>1996</risdate><volume>47</volume><issue>3</issue><spage>432</spage><epage>455</epage><pages>432-455</pages><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>Nonlocal amplitude equations of the complex Ginzburg-Landau type arise in a few physical contexts, such as in ferromagnetic systems. In this paper, we study the effect of the nonlocal term on the global dynamics by considering a model nonlocal complex amplitude equation. We discuss the global existence, uniqueness, and regularity of solutions to this equation. We prove the existence of the global attractor and of a finite dimensional inertial manifold. We provide upper and lower bounds to their dimensions, and compare them with those of the cubic complex Ginzburg-Landau equation. It is observed that the nonlocal term plays a stabilizing or destabilizing role depending on the sign of the real part of its coefficient. Moreover, the nonlocal term affects not only the diameter of the attractor but also its dimension. (Author)</abstract><doi>10.1007/BF00916648</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2275 |
ispartof | Zeitschrift für angewandte Mathematik und Physik, 1996-05, Vol.47 (3), p.432-455 |
issn | 0044-2275 1420-9039 |
language | eng |
recordid | cdi_proquest_miscellaneous_26371024 |
source | SpringerLink Journals |
title | The effect of nonlocal interactions on the dynamics of the Ginzburg-Landau equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20nonlocal%20interactions%20on%20the%20dynamics%20of%20the%20Ginzburg-Landau%20equation&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Duan,%20Jinqiao&rft.date=1996-05-01&rft.volume=47&rft.issue=3&rft.spage=432&rft.epage=455&rft.pages=432-455&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/BF00916648&rft_dat=%3Cproquest_cross%3E26371024%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26371024&rft_id=info:pmid/&rfr_iscdi=true |