High-Power Hydro-Actuators Fabricated from Biomimetic Carbon Nanotube Coiled Yarns with Fast Electrothermal Recovery

Bioinspired yarn/fiber structured hydro-actuators have recently attracted significant attention. However, most water-driven mechanical actuators are unsatisfactory because of the slow recovery process and low full-time power density. A rapidly recoverable high-power hydro-actuator is reported by des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2022-03, Vol.22 (6), p.2470-2478
Hauptverfasser: Son, Wonkyeong, Lee, Jae Myeong, Kim, Shi Hyeong, Kim, Hyeon Woo, Cho, Sung Beom, Suh, Dongseok, Chun, Sungwoo, Choi, Changsoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2478
container_issue 6
container_start_page 2470
container_title Nano letters
container_volume 22
creator Son, Wonkyeong
Lee, Jae Myeong
Kim, Shi Hyeong
Kim, Hyeon Woo
Cho, Sung Beom
Suh, Dongseok
Chun, Sungwoo
Choi, Changsoon
description Bioinspired yarn/fiber structured hydro-actuators have recently attracted significant attention. However, most water-driven mechanical actuators are unsatisfactory because of the slow recovery process and low full-time power density. A rapidly recoverable high-power hydro-actuator is reported by designing biomimetic carbon nanotube (CNT) yarns. The hydrophilic CNT (HCNT) coiled yarn was prepared by storing pre-twist into CNT sheets and subsequent electrochemical oxidation (ECO) treatment. The resulting yarn demonstrated structural stability even when one end was cut off without the possible loss of pre-stored twists. The HCNT coiled yarn actuators provided maximal contractile work of 863 J/kg at 11.8 MPa stress when driven by water. Moreover, the recovery time of electrically heated yarns at a direct current voltage of 5 V was 95% shorter than that of neat yarns without electric heating. Finally, the electrothermally recoverable hydro-actuators showed a high actuation frequency (0.17 Hz) and full-time power density (143.8 W/kg).
doi_str_mv 10.1021/acs.nanolett.2c00250
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2636869746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636869746</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-d8b3078f56b0eb6ab0b203c2a3e89b1f28359b9a1ffb243b597d25bfde10b0f43</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0E4vsfIOSRJeVix2kyQlUoEgKEYGCKbOdMjZIYbAfUf49RCyPT3fC89_EQcpLDJAeWn0sdJoMcXIcxTpgGYAK2yH4uOGRlXbPtv74q9shBCG8AUHMBu2SPCyYKmFb7JC7s6zJ7cF_o6WLVepdd6DjK6HygV1J5q2XElhrvenppXW97jFbTmfTKDfQu7Y-jQjpztkvYi_RDoF82LlM4RDrvUEfv4hJ9Lzv6iNp9ol8dkR0ju4DHm3pInq_mT7NFdnt_fTO7uM0kL6qYtZXi6UgjSgWoSqlAMeCaSY5VrXLDKi5qVcvcGMUKrkQ9bZlQpsUcFJiCH5Kz9dx37z5GDLHpbdDYdXJAN4aGlbysynpalAkt1qj2LgSPpnn3tpd-1eTQ_Phuku_m13ez8Z1ip5sNo-qx_Qv9Ck4ArIGf-Jsb_ZAe_n_mN36zkcU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636869746</pqid></control><display><type>article</type><title>High-Power Hydro-Actuators Fabricated from Biomimetic Carbon Nanotube Coiled Yarns with Fast Electrothermal Recovery</title><source>ACS Publications</source><source>MEDLINE</source><creator>Son, Wonkyeong ; Lee, Jae Myeong ; Kim, Shi Hyeong ; Kim, Hyeon Woo ; Cho, Sung Beom ; Suh, Dongseok ; Chun, Sungwoo ; Choi, Changsoon</creator><creatorcontrib>Son, Wonkyeong ; Lee, Jae Myeong ; Kim, Shi Hyeong ; Kim, Hyeon Woo ; Cho, Sung Beom ; Suh, Dongseok ; Chun, Sungwoo ; Choi, Changsoon</creatorcontrib><description>Bioinspired yarn/fiber structured hydro-actuators have recently attracted significant attention. However, most water-driven mechanical actuators are unsatisfactory because of the slow recovery process and low full-time power density. A rapidly recoverable high-power hydro-actuator is reported by designing biomimetic carbon nanotube (CNT) yarns. The hydrophilic CNT (HCNT) coiled yarn was prepared by storing pre-twist into CNT sheets and subsequent electrochemical oxidation (ECO) treatment. The resulting yarn demonstrated structural stability even when one end was cut off without the possible loss of pre-stored twists. The HCNT coiled yarn actuators provided maximal contractile work of 863 J/kg at 11.8 MPa stress when driven by water. Moreover, the recovery time of electrically heated yarns at a direct current voltage of 5 V was 95% shorter than that of neat yarns without electric heating. Finally, the electrothermally recoverable hydro-actuators showed a high actuation frequency (0.17 Hz) and full-time power density (143.8 W/kg).</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.2c00250</identifier><identifier>PMID: 35254078</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biomimetics ; Electricity ; Muscle Contraction ; Nanotubes, Carbon - chemistry ; Water</subject><ispartof>Nano letters, 2022-03, Vol.22 (6), p.2470-2478</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-d8b3078f56b0eb6ab0b203c2a3e89b1f28359b9a1ffb243b597d25bfde10b0f43</citedby><cites>FETCH-LOGICAL-a348t-d8b3078f56b0eb6ab0b203c2a3e89b1f28359b9a1ffb243b597d25bfde10b0f43</cites><orcidid>0000-0003-4456-4548 ; 0000-0002-3151-0113 ; 0000-0002-0392-3391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.2c00250$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.2c00250$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35254078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Son, Wonkyeong</creatorcontrib><creatorcontrib>Lee, Jae Myeong</creatorcontrib><creatorcontrib>Kim, Shi Hyeong</creatorcontrib><creatorcontrib>Kim, Hyeon Woo</creatorcontrib><creatorcontrib>Cho, Sung Beom</creatorcontrib><creatorcontrib>Suh, Dongseok</creatorcontrib><creatorcontrib>Chun, Sungwoo</creatorcontrib><creatorcontrib>Choi, Changsoon</creatorcontrib><title>High-Power Hydro-Actuators Fabricated from Biomimetic Carbon Nanotube Coiled Yarns with Fast Electrothermal Recovery</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Bioinspired yarn/fiber structured hydro-actuators have recently attracted significant attention. However, most water-driven mechanical actuators are unsatisfactory because of the slow recovery process and low full-time power density. A rapidly recoverable high-power hydro-actuator is reported by designing biomimetic carbon nanotube (CNT) yarns. The hydrophilic CNT (HCNT) coiled yarn was prepared by storing pre-twist into CNT sheets and subsequent electrochemical oxidation (ECO) treatment. The resulting yarn demonstrated structural stability even when one end was cut off without the possible loss of pre-stored twists. The HCNT coiled yarn actuators provided maximal contractile work of 863 J/kg at 11.8 MPa stress when driven by water. Moreover, the recovery time of electrically heated yarns at a direct current voltage of 5 V was 95% shorter than that of neat yarns without electric heating. Finally, the electrothermally recoverable hydro-actuators showed a high actuation frequency (0.17 Hz) and full-time power density (143.8 W/kg).</description><subject>Biomimetics</subject><subject>Electricity</subject><subject>Muscle Contraction</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Water</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0E4vsfIOSRJeVix2kyQlUoEgKEYGCKbOdMjZIYbAfUf49RCyPT3fC89_EQcpLDJAeWn0sdJoMcXIcxTpgGYAK2yH4uOGRlXbPtv74q9shBCG8AUHMBu2SPCyYKmFb7JC7s6zJ7cF_o6WLVepdd6DjK6HygV1J5q2XElhrvenppXW97jFbTmfTKDfQu7Y-jQjpztkvYi_RDoF82LlM4RDrvUEfv4hJ9Lzv6iNp9ol8dkR0ju4DHm3pInq_mT7NFdnt_fTO7uM0kL6qYtZXi6UgjSgWoSqlAMeCaSY5VrXLDKi5qVcvcGMUKrkQ9bZlQpsUcFJiCH5Kz9dx37z5GDLHpbdDYdXJAN4aGlbysynpalAkt1qj2LgSPpnn3tpd-1eTQ_Phuku_m13ez8Z1ip5sNo-qx_Qv9Ck4ArIGf-Jsb_ZAe_n_mN36zkcU</recordid><startdate>20220323</startdate><enddate>20220323</enddate><creator>Son, Wonkyeong</creator><creator>Lee, Jae Myeong</creator><creator>Kim, Shi Hyeong</creator><creator>Kim, Hyeon Woo</creator><creator>Cho, Sung Beom</creator><creator>Suh, Dongseok</creator><creator>Chun, Sungwoo</creator><creator>Choi, Changsoon</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4456-4548</orcidid><orcidid>https://orcid.org/0000-0002-3151-0113</orcidid><orcidid>https://orcid.org/0000-0002-0392-3391</orcidid></search><sort><creationdate>20220323</creationdate><title>High-Power Hydro-Actuators Fabricated from Biomimetic Carbon Nanotube Coiled Yarns with Fast Electrothermal Recovery</title><author>Son, Wonkyeong ; Lee, Jae Myeong ; Kim, Shi Hyeong ; Kim, Hyeon Woo ; Cho, Sung Beom ; Suh, Dongseok ; Chun, Sungwoo ; Choi, Changsoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-d8b3078f56b0eb6ab0b203c2a3e89b1f28359b9a1ffb243b597d25bfde10b0f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomimetics</topic><topic>Electricity</topic><topic>Muscle Contraction</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Son, Wonkyeong</creatorcontrib><creatorcontrib>Lee, Jae Myeong</creatorcontrib><creatorcontrib>Kim, Shi Hyeong</creatorcontrib><creatorcontrib>Kim, Hyeon Woo</creatorcontrib><creatorcontrib>Cho, Sung Beom</creatorcontrib><creatorcontrib>Suh, Dongseok</creatorcontrib><creatorcontrib>Chun, Sungwoo</creatorcontrib><creatorcontrib>Choi, Changsoon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Son, Wonkyeong</au><au>Lee, Jae Myeong</au><au>Kim, Shi Hyeong</au><au>Kim, Hyeon Woo</au><au>Cho, Sung Beom</au><au>Suh, Dongseok</au><au>Chun, Sungwoo</au><au>Choi, Changsoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Power Hydro-Actuators Fabricated from Biomimetic Carbon Nanotube Coiled Yarns with Fast Electrothermal Recovery</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2022-03-23</date><risdate>2022</risdate><volume>22</volume><issue>6</issue><spage>2470</spage><epage>2478</epage><pages>2470-2478</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Bioinspired yarn/fiber structured hydro-actuators have recently attracted significant attention. However, most water-driven mechanical actuators are unsatisfactory because of the slow recovery process and low full-time power density. A rapidly recoverable high-power hydro-actuator is reported by designing biomimetic carbon nanotube (CNT) yarns. The hydrophilic CNT (HCNT) coiled yarn was prepared by storing pre-twist into CNT sheets and subsequent electrochemical oxidation (ECO) treatment. The resulting yarn demonstrated structural stability even when one end was cut off without the possible loss of pre-stored twists. The HCNT coiled yarn actuators provided maximal contractile work of 863 J/kg at 11.8 MPa stress when driven by water. Moreover, the recovery time of electrically heated yarns at a direct current voltage of 5 V was 95% shorter than that of neat yarns without electric heating. Finally, the electrothermally recoverable hydro-actuators showed a high actuation frequency (0.17 Hz) and full-time power density (143.8 W/kg).</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35254078</pmid><doi>10.1021/acs.nanolett.2c00250</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4456-4548</orcidid><orcidid>https://orcid.org/0000-0002-3151-0113</orcidid><orcidid>https://orcid.org/0000-0002-0392-3391</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2022-03, Vol.22 (6), p.2470-2478
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2636869746
source ACS Publications; MEDLINE
subjects Biomimetics
Electricity
Muscle Contraction
Nanotubes, Carbon - chemistry
Water
title High-Power Hydro-Actuators Fabricated from Biomimetic Carbon Nanotube Coiled Yarns with Fast Electrothermal Recovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Power%20Hydro-Actuators%20Fabricated%20from%20Biomimetic%20Carbon%20Nanotube%20Coiled%20Yarns%20with%20Fast%20Electrothermal%20Recovery&rft.jtitle=Nano%20letters&rft.au=Son,%20Wonkyeong&rft.date=2022-03-23&rft.volume=22&rft.issue=6&rft.spage=2470&rft.epage=2478&rft.pages=2470-2478&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.2c00250&rft_dat=%3Cproquest_cross%3E2636869746%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2636869746&rft_id=info:pmid/35254078&rfr_iscdi=true