Development of a new thermal time model for describing tuber sprouting of Purple nutsedge (Cyperus rotundus L.)

Tubers are the main means of propagation in purple nutsedge (Cyperus rotundus L.), one of the most troublesome weeds competing in crop and pasture systems throughout the world. Tuber sprouting is highly linked to temperature, the main environmental factor limiting the growth of purple nutsedge. In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Weed research 2021-12, Vol.61 (6), p.431-442
Hauptverfasser: Mijani, Sajad, Rastgoo, Mehdi, Ghanbari, Ali, Nassiri Mahallati, Mehdi, González‐Andújar, José L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 442
container_issue 6
container_start_page 431
container_title Weed research
container_volume 61
creator Mijani, Sajad
Rastgoo, Mehdi
Ghanbari, Ali
Nassiri Mahallati, Mehdi
González‐Andújar, José L.
description Tubers are the main means of propagation in purple nutsedge (Cyperus rotundus L.), one of the most troublesome weeds competing in crop and pasture systems throughout the world. Tuber sprouting is highly linked to temperature, the main environmental factor limiting the growth of purple nutsedge. In the present study, a new thermal time model was developed for describing the temperature‐dependent tuber sprouting of purple nutsedge. This model was validated based on results from a laboratory tuber sprouting experiment performed under different temperature regimes. The proposed model is an integration of three equations comprising those of Gompertz, Dent like, and Segmented (GDS) functions, developed for describing cumulative sprouting, final sprouting and sprouting rate of purple nutsedge tubers respectively. The Gompertz‐based model fitted the data well (R2 = 0.94, RMSE %< 10). This model was also able to predict lag time (time up to start of sprouting), final sprouting and sprouting rate. A Weibull‐based model was only able to estimate temperature thresholds based on the final sprouting. Whereas, the GDS model predicted related temperature thresholds according to both final sprouting (optimal in the range of 20.31–29.72°C) and the absolute sprouting rate (optimum at 29.96°C). In conclusion, the proposed model is simple and includes parameters of a biological significance, simultaneously generating estimates of useful temperature thresholds and fitting cumulative tuber sprouting of purple nutsedge. Our study has also proved the superiority of the absolute sprouting rate index when calculating the temperature thresholds.
doi_str_mv 10.1111/wre.12501
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2636746633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636746633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3251-28a8bd3cf18f8a3d9ea00f5823580af9de8c3da74c4e531aefbb10fd6501b9f33</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK4e_AYBL7uHrknTpu1R1vUPLCiieAxpM1m7tE1NGpf99matJ8G5zAz83vDmIXRJyYKGut5ZWNA4JfQITSjjacRoTo7RhJCERTRj2Sk6c25LCOG8KCbI3MIXNKZvoRuw0VjiDnZ4-ADbygYPdQu4NQoarI3FClxl67LuNnjwJVjsemv8cNiD9NnbvgHc-cGB2gCeLfc9WO-wNYPvVBjWi_k5OtGycXDx26fo7W71unyI1k_3j8ubdVSxOKVRnMu8VKzSNNe5ZKoASYhO85ilOZG6UJBXTMksqRJIGZWgy5ISrXj4vCw0Y1M0G-8Gh58e3CDa2lXQNLID452IOeNZwjk7oFd_0K3xtgvuAkViVhQFTQI1H6nKGucsaNHbupV2LygRh-hFiF78RB_Y65Hd1Q3s_wfF-8tqVHwDmOqGMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602399914</pqid></control><display><type>article</type><title>Development of a new thermal time model for describing tuber sprouting of Purple nutsedge (Cyperus rotundus L.)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mijani, Sajad ; Rastgoo, Mehdi ; Ghanbari, Ali ; Nassiri Mahallati, Mehdi ; González‐Andújar, José L.</creator><creatorcontrib>Mijani, Sajad ; Rastgoo, Mehdi ; Ghanbari, Ali ; Nassiri Mahallati, Mehdi ; González‐Andújar, José L.</creatorcontrib><description>Tubers are the main means of propagation in purple nutsedge (Cyperus rotundus L.), one of the most troublesome weeds competing in crop and pasture systems throughout the world. Tuber sprouting is highly linked to temperature, the main environmental factor limiting the growth of purple nutsedge. In the present study, a new thermal time model was developed for describing the temperature‐dependent tuber sprouting of purple nutsedge. This model was validated based on results from a laboratory tuber sprouting experiment performed under different temperature regimes. The proposed model is an integration of three equations comprising those of Gompertz, Dent like, and Segmented (GDS) functions, developed for describing cumulative sprouting, final sprouting and sprouting rate of purple nutsedge tubers respectively. The Gompertz‐based model fitted the data well (R2 = 0.94, RMSE %&lt; 10). This model was also able to predict lag time (time up to start of sprouting), final sprouting and sprouting rate. A Weibull‐based model was only able to estimate temperature thresholds based on the final sprouting. Whereas, the GDS model predicted related temperature thresholds according to both final sprouting (optimal in the range of 20.31–29.72°C) and the absolute sprouting rate (optimum at 29.96°C). In conclusion, the proposed model is simple and includes parameters of a biological significance, simultaneously generating estimates of useful temperature thresholds and fitting cumulative tuber sprouting of purple nutsedge. Our study has also proved the superiority of the absolute sprouting rate index when calculating the temperature thresholds.</description><identifier>ISSN: 0043-1737</identifier><identifier>EISSN: 1365-3180</identifier><identifier>DOI: 10.1111/wre.12501</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>cardinal models ; Cyperus rotundus ; Environmental factors ; Gompertz model ; Lag time ; Optimization ; Pasture ; pastures ; sprouting rate ; temperature ; Temperature dependence ; temperature thresholds ; Thresholds ; Tube fittings ; Tubers ; weeds</subject><ispartof>Weed research, 2021-12, Vol.61 (6), p.431-442</ispartof><rights>2021 European Weed Research Society.</rights><rights>2021 European Weed Research Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3251-28a8bd3cf18f8a3d9ea00f5823580af9de8c3da74c4e531aefbb10fd6501b9f33</cites><orcidid>0000-0002-3577-9945 ; 0000-0003-2356-4098 ; 0000-0002-1974-8727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fwre.12501$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fwre.12501$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Mijani, Sajad</creatorcontrib><creatorcontrib>Rastgoo, Mehdi</creatorcontrib><creatorcontrib>Ghanbari, Ali</creatorcontrib><creatorcontrib>Nassiri Mahallati, Mehdi</creatorcontrib><creatorcontrib>González‐Andújar, José L.</creatorcontrib><title>Development of a new thermal time model for describing tuber sprouting of Purple nutsedge (Cyperus rotundus L.)</title><title>Weed research</title><description>Tubers are the main means of propagation in purple nutsedge (Cyperus rotundus L.), one of the most troublesome weeds competing in crop and pasture systems throughout the world. Tuber sprouting is highly linked to temperature, the main environmental factor limiting the growth of purple nutsedge. In the present study, a new thermal time model was developed for describing the temperature‐dependent tuber sprouting of purple nutsedge. This model was validated based on results from a laboratory tuber sprouting experiment performed under different temperature regimes. The proposed model is an integration of three equations comprising those of Gompertz, Dent like, and Segmented (GDS) functions, developed for describing cumulative sprouting, final sprouting and sprouting rate of purple nutsedge tubers respectively. The Gompertz‐based model fitted the data well (R2 = 0.94, RMSE %&lt; 10). This model was also able to predict lag time (time up to start of sprouting), final sprouting and sprouting rate. A Weibull‐based model was only able to estimate temperature thresholds based on the final sprouting. Whereas, the GDS model predicted related temperature thresholds according to both final sprouting (optimal in the range of 20.31–29.72°C) and the absolute sprouting rate (optimum at 29.96°C). In conclusion, the proposed model is simple and includes parameters of a biological significance, simultaneously generating estimates of useful temperature thresholds and fitting cumulative tuber sprouting of purple nutsedge. Our study has also proved the superiority of the absolute sprouting rate index when calculating the temperature thresholds.</description><subject>cardinal models</subject><subject>Cyperus rotundus</subject><subject>Environmental factors</subject><subject>Gompertz model</subject><subject>Lag time</subject><subject>Optimization</subject><subject>Pasture</subject><subject>pastures</subject><subject>sprouting rate</subject><subject>temperature</subject><subject>Temperature dependence</subject><subject>temperature thresholds</subject><subject>Thresholds</subject><subject>Tube fittings</subject><subject>Tubers</subject><subject>weeds</subject><issn>0043-1737</issn><issn>1365-3180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK4e_AYBL7uHrknTpu1R1vUPLCiieAxpM1m7tE1NGpf99matJ8G5zAz83vDmIXRJyYKGut5ZWNA4JfQITSjjacRoTo7RhJCERTRj2Sk6c25LCOG8KCbI3MIXNKZvoRuw0VjiDnZ4-ADbygYPdQu4NQoarI3FClxl67LuNnjwJVjsemv8cNiD9NnbvgHc-cGB2gCeLfc9WO-wNYPvVBjWi_k5OtGycXDx26fo7W71unyI1k_3j8ubdVSxOKVRnMu8VKzSNNe5ZKoASYhO85ilOZG6UJBXTMksqRJIGZWgy5ISrXj4vCw0Y1M0G-8Gh58e3CDa2lXQNLID452IOeNZwjk7oFd_0K3xtgvuAkViVhQFTQI1H6nKGucsaNHbupV2LygRh-hFiF78RB_Y65Hd1Q3s_wfF-8tqVHwDmOqGMw</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Mijani, Sajad</creator><creator>Rastgoo, Mehdi</creator><creator>Ghanbari, Ali</creator><creator>Nassiri Mahallati, Mehdi</creator><creator>González‐Andújar, José L.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3577-9945</orcidid><orcidid>https://orcid.org/0000-0003-2356-4098</orcidid><orcidid>https://orcid.org/0000-0002-1974-8727</orcidid></search><sort><creationdate>202112</creationdate><title>Development of a new thermal time model for describing tuber sprouting of Purple nutsedge (Cyperus rotundus L.)</title><author>Mijani, Sajad ; Rastgoo, Mehdi ; Ghanbari, Ali ; Nassiri Mahallati, Mehdi ; González‐Andújar, José L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3251-28a8bd3cf18f8a3d9ea00f5823580af9de8c3da74c4e531aefbb10fd6501b9f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>cardinal models</topic><topic>Cyperus rotundus</topic><topic>Environmental factors</topic><topic>Gompertz model</topic><topic>Lag time</topic><topic>Optimization</topic><topic>Pasture</topic><topic>pastures</topic><topic>sprouting rate</topic><topic>temperature</topic><topic>Temperature dependence</topic><topic>temperature thresholds</topic><topic>Thresholds</topic><topic>Tube fittings</topic><topic>Tubers</topic><topic>weeds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mijani, Sajad</creatorcontrib><creatorcontrib>Rastgoo, Mehdi</creatorcontrib><creatorcontrib>Ghanbari, Ali</creatorcontrib><creatorcontrib>Nassiri Mahallati, Mehdi</creatorcontrib><creatorcontrib>González‐Andújar, José L.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Weed research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mijani, Sajad</au><au>Rastgoo, Mehdi</au><au>Ghanbari, Ali</au><au>Nassiri Mahallati, Mehdi</au><au>González‐Andújar, José L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a new thermal time model for describing tuber sprouting of Purple nutsedge (Cyperus rotundus L.)</atitle><jtitle>Weed research</jtitle><date>2021-12</date><risdate>2021</risdate><volume>61</volume><issue>6</issue><spage>431</spage><epage>442</epage><pages>431-442</pages><issn>0043-1737</issn><eissn>1365-3180</eissn><abstract>Tubers are the main means of propagation in purple nutsedge (Cyperus rotundus L.), one of the most troublesome weeds competing in crop and pasture systems throughout the world. Tuber sprouting is highly linked to temperature, the main environmental factor limiting the growth of purple nutsedge. In the present study, a new thermal time model was developed for describing the temperature‐dependent tuber sprouting of purple nutsedge. This model was validated based on results from a laboratory tuber sprouting experiment performed under different temperature regimes. The proposed model is an integration of three equations comprising those of Gompertz, Dent like, and Segmented (GDS) functions, developed for describing cumulative sprouting, final sprouting and sprouting rate of purple nutsedge tubers respectively. The Gompertz‐based model fitted the data well (R2 = 0.94, RMSE %&lt; 10). This model was also able to predict lag time (time up to start of sprouting), final sprouting and sprouting rate. A Weibull‐based model was only able to estimate temperature thresholds based on the final sprouting. Whereas, the GDS model predicted related temperature thresholds according to both final sprouting (optimal in the range of 20.31–29.72°C) and the absolute sprouting rate (optimum at 29.96°C). In conclusion, the proposed model is simple and includes parameters of a biological significance, simultaneously generating estimates of useful temperature thresholds and fitting cumulative tuber sprouting of purple nutsedge. Our study has also proved the superiority of the absolute sprouting rate index when calculating the temperature thresholds.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/wre.12501</doi><tpages>0</tpages><orcidid>https://orcid.org/0000-0002-3577-9945</orcidid><orcidid>https://orcid.org/0000-0003-2356-4098</orcidid><orcidid>https://orcid.org/0000-0002-1974-8727</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1737
ispartof Weed research, 2021-12, Vol.61 (6), p.431-442
issn 0043-1737
1365-3180
language eng
recordid cdi_proquest_miscellaneous_2636746633
source Wiley Online Library Journals Frontfile Complete
subjects cardinal models
Cyperus rotundus
Environmental factors
Gompertz model
Lag time
Optimization
Pasture
pastures
sprouting rate
temperature
Temperature dependence
temperature thresholds
Thresholds
Tube fittings
Tubers
weeds
title Development of a new thermal time model for describing tuber sprouting of Purple nutsedge (Cyperus rotundus L.)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20new%20thermal%20time%20model%20for%20describing%20tuber%20sprouting%20of%20Purple%20nutsedge%20(Cyperus%20rotundus%20L.)&rft.jtitle=Weed%20research&rft.au=Mijani,%20Sajad&rft.date=2021-12&rft.volume=61&rft.issue=6&rft.spage=431&rft.epage=442&rft.pages=431-442&rft.issn=0043-1737&rft.eissn=1365-3180&rft_id=info:doi/10.1111/wre.12501&rft_dat=%3Cproquest_cross%3E2636746633%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602399914&rft_id=info:pmid/&rfr_iscdi=true