Large-Scale, Lightweight, and Robust Nanocomposites Based on Ruthenium-Decorated Carbon Nanosheets for Deformable Electrochemical Capacitors
Despite the increase in demand for deformable electrochemical capacitors as a power source for wearable electronics, significant obstacles remain in developing these capacitors, including their manufacturing complexity and insufficient deformability. With recognition of these challenges, a facile st...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-03, Vol.14 (10), p.12193-12203 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12203 |
---|---|
container_issue | 10 |
container_start_page | 12193 |
container_title | ACS applied materials & interfaces |
container_volume | 14 |
creator | Jun, Jong Han Lee, Yu-Ki Kim, Juhee Song, Hyeonjun Jeong, Youngjin Kim, Changsoon Lee, Ji-Hoon Choi, In-Suk |
description | Despite the increase in demand for deformable electrochemical capacitors as a power source for wearable electronics, significant obstacles remain in developing these capacitors, including their manufacturing complexity and insufficient deformability. With recognition of these challenges, a facile strategy is proposed to fabricate large-scale, lightweight, and mechanically robust composite electrodes composed of ruthenium nanoparticles embedded in freestanding carbon nanotube (CNT)-based nanosheets (Ru@a-CNTs). Surface-modified CNT sheets with hierarchical porous structures can behave as an ideal platform to accommodate a large number of uniformly distributed Ru nanoparticles (Ru/CNT weight ratio of 5:1) while improving compatibility with aqueous electrolytes. Accordingly, Ru@a-CNTs offer a large electrochemically active area, showing a high specific capacitance (∼253.3 F g–1) and stability for over 2000 cycles. More importantly, the exceptional performance and mechanical durability of quasi-solid-state capacitors assembled with Ru@a-CNTs and a PVA-H3PO4 hydrogel electrolyte are successfully demonstrated in that 94% of the initial capacitance is retained after 100 000 cycles of bending deformation and a commercial smartwatch is charged by multiple cells. The feasible large-scale production and potential applicability shown in this study provide a simple and highly effective design strategy for a wide range of energy storage applications from small- to large-scale wearable electronics. |
doi_str_mv | 10.1021/acsami.1c23455 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2636147899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636147899</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-cf61daa55cb65dfb412228b92443d32af0a1cfec60c4c44e83090e2b3ac4b4483</originalsourceid><addsrcrecordid>eNp1kU1P3DAQhi3UCijtlSPysarI4s-QHGGhH9KKSrQ9R-PJhA1K4sV2hPof-qPr1S7cuIwtz_O-1szL2KkUCymUvACMMPYLiUobaw_YsayNKSpl1bvXuzFH7EOMj0KUWgl7yI60VcYKrY_ZvxWEByp-IQx0zlf9wzo907aec5hafu_dHBO_g8mjHzc-9okiv4ZILfcTv5_TmqZ-HosbQh8g5eclBJdbW0lcE6XIOx_4DeU6ghuI3w6EKXhc09jnb7NgA9gnH-JH9r6DIdKn_XnC_ny9_b38Xqx-fvuxvFoVoLVIBXalbAGsRVfatnNGKqUqV-dBdasVdAIkdoSlQIPGUKVFLUg5DWicMZU-YZ93vpvgn2aKqRn7iDQMMJGfY6NKXUpzWdV1Rhc7FIOPMVDXbEI_QvjbSNFsE2h2CTT7BLLgbO89u5HaV_xl5Rn4sgOysHn0c5jyqG-5_QeCiZMr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636147899</pqid></control><display><type>article</type><title>Large-Scale, Lightweight, and Robust Nanocomposites Based on Ruthenium-Decorated Carbon Nanosheets for Deformable Electrochemical Capacitors</title><source>American Chemical Society Journals</source><creator>Jun, Jong Han ; Lee, Yu-Ki ; Kim, Juhee ; Song, Hyeonjun ; Jeong, Youngjin ; Kim, Changsoon ; Lee, Ji-Hoon ; Choi, In-Suk</creator><creatorcontrib>Jun, Jong Han ; Lee, Yu-Ki ; Kim, Juhee ; Song, Hyeonjun ; Jeong, Youngjin ; Kim, Changsoon ; Lee, Ji-Hoon ; Choi, In-Suk</creatorcontrib><description>Despite the increase in demand for deformable electrochemical capacitors as a power source for wearable electronics, significant obstacles remain in developing these capacitors, including their manufacturing complexity and insufficient deformability. With recognition of these challenges, a facile strategy is proposed to fabricate large-scale, lightweight, and mechanically robust composite electrodes composed of ruthenium nanoparticles embedded in freestanding carbon nanotube (CNT)-based nanosheets (Ru@a-CNTs). Surface-modified CNT sheets with hierarchical porous structures can behave as an ideal platform to accommodate a large number of uniformly distributed Ru nanoparticles (Ru/CNT weight ratio of 5:1) while improving compatibility with aqueous electrolytes. Accordingly, Ru@a-CNTs offer a large electrochemically active area, showing a high specific capacitance (∼253.3 F g–1) and stability for over 2000 cycles. More importantly, the exceptional performance and mechanical durability of quasi-solid-state capacitors assembled with Ru@a-CNTs and a PVA-H3PO4 hydrogel electrolyte are successfully demonstrated in that 94% of the initial capacitance is retained after 100 000 cycles of bending deformation and a commercial smartwatch is charged by multiple cells. The feasible large-scale production and potential applicability shown in this study provide a simple and highly effective design strategy for a wide range of energy storage applications from small- to large-scale wearable electronics.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c23455</identifier><identifier>PMID: 35245033</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2022-03, Vol.14 (10), p.12193-12203</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-cf61daa55cb65dfb412228b92443d32af0a1cfec60c4c44e83090e2b3ac4b4483</citedby><cites>FETCH-LOGICAL-a330t-cf61daa55cb65dfb412228b92443d32af0a1cfec60c4c44e83090e2b3ac4b4483</cites><orcidid>0000-0002-4376-8832 ; 0000-0002-5933-7551 ; 0000-0002-3825-6293 ; 0000-0001-5640-9284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c23455$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c23455$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35245033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jun, Jong Han</creatorcontrib><creatorcontrib>Lee, Yu-Ki</creatorcontrib><creatorcontrib>Kim, Juhee</creatorcontrib><creatorcontrib>Song, Hyeonjun</creatorcontrib><creatorcontrib>Jeong, Youngjin</creatorcontrib><creatorcontrib>Kim, Changsoon</creatorcontrib><creatorcontrib>Lee, Ji-Hoon</creatorcontrib><creatorcontrib>Choi, In-Suk</creatorcontrib><title>Large-Scale, Lightweight, and Robust Nanocomposites Based on Ruthenium-Decorated Carbon Nanosheets for Deformable Electrochemical Capacitors</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Despite the increase in demand for deformable electrochemical capacitors as a power source for wearable electronics, significant obstacles remain in developing these capacitors, including their manufacturing complexity and insufficient deformability. With recognition of these challenges, a facile strategy is proposed to fabricate large-scale, lightweight, and mechanically robust composite electrodes composed of ruthenium nanoparticles embedded in freestanding carbon nanotube (CNT)-based nanosheets (Ru@a-CNTs). Surface-modified CNT sheets with hierarchical porous structures can behave as an ideal platform to accommodate a large number of uniformly distributed Ru nanoparticles (Ru/CNT weight ratio of 5:1) while improving compatibility with aqueous electrolytes. Accordingly, Ru@a-CNTs offer a large electrochemically active area, showing a high specific capacitance (∼253.3 F g–1) and stability for over 2000 cycles. More importantly, the exceptional performance and mechanical durability of quasi-solid-state capacitors assembled with Ru@a-CNTs and a PVA-H3PO4 hydrogel electrolyte are successfully demonstrated in that 94% of the initial capacitance is retained after 100 000 cycles of bending deformation and a commercial smartwatch is charged by multiple cells. The feasible large-scale production and potential applicability shown in this study provide a simple and highly effective design strategy for a wide range of energy storage applications from small- to large-scale wearable electronics.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kU1P3DAQhi3UCijtlSPysarI4s-QHGGhH9KKSrQ9R-PJhA1K4sV2hPof-qPr1S7cuIwtz_O-1szL2KkUCymUvACMMPYLiUobaw_YsayNKSpl1bvXuzFH7EOMj0KUWgl7yI60VcYKrY_ZvxWEByp-IQx0zlf9wzo907aec5hafu_dHBO_g8mjHzc-9okiv4ZILfcTv5_TmqZ-HosbQh8g5eclBJdbW0lcE6XIOx_4DeU6ghuI3w6EKXhc09jnb7NgA9gnH-JH9r6DIdKn_XnC_ny9_b38Xqx-fvuxvFoVoLVIBXalbAGsRVfatnNGKqUqV-dBdasVdAIkdoSlQIPGUKVFLUg5DWicMZU-YZ93vpvgn2aKqRn7iDQMMJGfY6NKXUpzWdV1Rhc7FIOPMVDXbEI_QvjbSNFsE2h2CTT7BLLgbO89u5HaV_xl5Rn4sgOysHn0c5jyqG-5_QeCiZMr</recordid><startdate>20220316</startdate><enddate>20220316</enddate><creator>Jun, Jong Han</creator><creator>Lee, Yu-Ki</creator><creator>Kim, Juhee</creator><creator>Song, Hyeonjun</creator><creator>Jeong, Youngjin</creator><creator>Kim, Changsoon</creator><creator>Lee, Ji-Hoon</creator><creator>Choi, In-Suk</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4376-8832</orcidid><orcidid>https://orcid.org/0000-0002-5933-7551</orcidid><orcidid>https://orcid.org/0000-0002-3825-6293</orcidid><orcidid>https://orcid.org/0000-0001-5640-9284</orcidid></search><sort><creationdate>20220316</creationdate><title>Large-Scale, Lightweight, and Robust Nanocomposites Based on Ruthenium-Decorated Carbon Nanosheets for Deformable Electrochemical Capacitors</title><author>Jun, Jong Han ; Lee, Yu-Ki ; Kim, Juhee ; Song, Hyeonjun ; Jeong, Youngjin ; Kim, Changsoon ; Lee, Ji-Hoon ; Choi, In-Suk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-cf61daa55cb65dfb412228b92443d32af0a1cfec60c4c44e83090e2b3ac4b4483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jun, Jong Han</creatorcontrib><creatorcontrib>Lee, Yu-Ki</creatorcontrib><creatorcontrib>Kim, Juhee</creatorcontrib><creatorcontrib>Song, Hyeonjun</creatorcontrib><creatorcontrib>Jeong, Youngjin</creatorcontrib><creatorcontrib>Kim, Changsoon</creatorcontrib><creatorcontrib>Lee, Ji-Hoon</creatorcontrib><creatorcontrib>Choi, In-Suk</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jun, Jong Han</au><au>Lee, Yu-Ki</au><au>Kim, Juhee</au><au>Song, Hyeonjun</au><au>Jeong, Youngjin</au><au>Kim, Changsoon</au><au>Lee, Ji-Hoon</au><au>Choi, In-Suk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Scale, Lightweight, and Robust Nanocomposites Based on Ruthenium-Decorated Carbon Nanosheets for Deformable Electrochemical Capacitors</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-03-16</date><risdate>2022</risdate><volume>14</volume><issue>10</issue><spage>12193</spage><epage>12203</epage><pages>12193-12203</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Despite the increase in demand for deformable electrochemical capacitors as a power source for wearable electronics, significant obstacles remain in developing these capacitors, including their manufacturing complexity and insufficient deformability. With recognition of these challenges, a facile strategy is proposed to fabricate large-scale, lightweight, and mechanically robust composite electrodes composed of ruthenium nanoparticles embedded in freestanding carbon nanotube (CNT)-based nanosheets (Ru@a-CNTs). Surface-modified CNT sheets with hierarchical porous structures can behave as an ideal platform to accommodate a large number of uniformly distributed Ru nanoparticles (Ru/CNT weight ratio of 5:1) while improving compatibility with aqueous electrolytes. Accordingly, Ru@a-CNTs offer a large electrochemically active area, showing a high specific capacitance (∼253.3 F g–1) and stability for over 2000 cycles. More importantly, the exceptional performance and mechanical durability of quasi-solid-state capacitors assembled with Ru@a-CNTs and a PVA-H3PO4 hydrogel electrolyte are successfully demonstrated in that 94% of the initial capacitance is retained after 100 000 cycles of bending deformation and a commercial smartwatch is charged by multiple cells. The feasible large-scale production and potential applicability shown in this study provide a simple and highly effective design strategy for a wide range of energy storage applications from small- to large-scale wearable electronics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35245033</pmid><doi>10.1021/acsami.1c23455</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4376-8832</orcidid><orcidid>https://orcid.org/0000-0002-5933-7551</orcidid><orcidid>https://orcid.org/0000-0002-3825-6293</orcidid><orcidid>https://orcid.org/0000-0001-5640-9284</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2022-03, Vol.14 (10), p.12193-12203 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2636147899 |
source | American Chemical Society Journals |
subjects | Energy, Environmental, and Catalysis Applications |
title | Large-Scale, Lightweight, and Robust Nanocomposites Based on Ruthenium-Decorated Carbon Nanosheets for Deformable Electrochemical Capacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T16%3A24%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Scale,%20Lightweight,%20and%20Robust%20Nanocomposites%20Based%20on%20Ruthenium-Decorated%20Carbon%20Nanosheets%20for%20Deformable%20Electrochemical%20Capacitors&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Jun,%20Jong%20Han&rft.date=2022-03-16&rft.volume=14&rft.issue=10&rft.spage=12193&rft.epage=12203&rft.pages=12193-12203&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c23455&rft_dat=%3Cproquest_cross%3E2636147899%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2636147899&rft_id=info:pmid/35245033&rfr_iscdi=true |