Activating a Semiconductor–Liquid Junction via Laser‐Derived Dual Interfacial Layers for Boosted Photoelectrochemical Water Splitting

The semiconductor–liquid junction (SCLJ), the dominant place in photoelectrochemical (PEC) catalysis, determines the interfacial activity and stability of photoelectrodes, whcih directly affects the viability of PEC hydrogen generation. Though efforts dedicated in past decades, a challenge remains r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-05, Vol.34 (19), p.e2201140-n/a
Hauptverfasser: Jian, Jie, Wang, Shiyuan, Ye, Qian, Li, Fan, Su, Guirong, Liu, Wei, Qu, Changzhen, Liu, Feng, Li, Can, Jia, Lichao, Novikov, Andrei A., Vinokurov, Vladimir A., Harvey, Daniel H. S., Shchukin, Dmitry, Friedrich, Dennis, van de Krol, Roel, Wang, Hongqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page e2201140
container_title Advanced materials (Weinheim)
container_volume 34
creator Jian, Jie
Wang, Shiyuan
Ye, Qian
Li, Fan
Su, Guirong
Liu, Wei
Qu, Changzhen
Liu, Feng
Li, Can
Jia, Lichao
Novikov, Andrei A.
Vinokurov, Vladimir A.
Harvey, Daniel H. S.
Shchukin, Dmitry
Friedrich, Dennis
van de Krol, Roel
Wang, Hongqiang
description The semiconductor–liquid junction (SCLJ), the dominant place in photoelectrochemical (PEC) catalysis, determines the interfacial activity and stability of photoelectrodes, whcih directly affects the viability of PEC hydrogen generation. Though efforts dedicated in past decades, a challenge remains regarding creating a synchronously active and stable SCLJ, owing to the technical hurdles of simultaneously overlaying the two advantages. The present work demonstrates that creating an SCLJ with a unique configuration of the dual interfacial layers can yield BiVO4 photoanodes with synchronously boosted photoelectrochemical activity and operational stability, with values located at the top in the records of such photoelectrodes. The bespoke dual interfacial layers, accessed via grafting laser‐generated carbon dots with phenolic hydroxyl groups (LGCDs‐PHGs), are experimentally verified effective, not only in generating the uniform layer of LGCDs with covalent anchoring for inhibited photocorrosion, but also in activating, respectively, the charge separation and transfer in each layer for boosted charge‐carrier kinetics, resulting in FeNiOOH–LGCDs‐PHGs–MBVO photoanodes with a dual configuration with the photocurrent density of 6.08 mA cm−2 @ 1.23 VRHE, and operational stability up to 120 h @ 1.23 VRHE. Further work exploring LGCDs‐PHGs from catecholic molecules warrants the proposed strategy as being a universal alternative for addressing the interfacial charge‐carrier kinetics and operational stability of semiconductor photoelectrodes. Dual interfacial layers, composed of a top covalent anchored carbon dots layer and a Mo:BiVO4 shallow layer with enriched oxygen vacancies, are constructed to synchronously boost charge‐carrier kinetics and inhibit photocorrosion, which results in a BiVO4 photoanode with a photocurrent density of 6.08 mA cm−2, and operational stability up to 120 h at 1.23 VRHE.
doi_str_mv 10.1002/adma.202201140
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2636140461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2662425683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-e5723a5bd80e8b2ee8cbbb734e3a45185e2019df7e631b375b384671b4eaab783</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBmALgehSuHJElrhwyeLvJMely0erIJAK4hjZzoS6SuKt7SzaG1dulfoP-SX1akuRuHCyJT8zY82L0HNKlpQQ9lp3o14ywhihVJAHaEElo4UgtXyIFqTmsqiVqI7QkxgvCSG1IuoxOuKSCcEpXaBfK5vcVic3fccan8PorJ-62SYffv-8adzV7Dp8Nk9Z-QlvncaNjpDfrtcQ3BY6vJ71gE-nBKHX1uV7o3cQIu59wG-8jymbzxc-eRjApuDtxX5Idt90rsHnm8Gl_fin6FGvhwjP7s5j9PXd2y8nH4rm0_vTk1VTWF5yUoAsGdfSdBWByjCAyhpjSi6AayFpJSGvou76EhSnhpfS8EqokhoBWpuy4sfo1aHvJvirGWJqRxctDIOewM-xZYqrvEqhaKYv_6GXfg5T_l1WigkmVcWzWh6UDT7GAH27CW7UYddS0u5Davchtfch5YIXd21nM0J3z_-kkkF9AD_cALv_tGtX64-rv81vAYP2oWY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662425683</pqid></control><display><type>article</type><title>Activating a Semiconductor–Liquid Junction via Laser‐Derived Dual Interfacial Layers for Boosted Photoelectrochemical Water Splitting</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jian, Jie ; Wang, Shiyuan ; Ye, Qian ; Li, Fan ; Su, Guirong ; Liu, Wei ; Qu, Changzhen ; Liu, Feng ; Li, Can ; Jia, Lichao ; Novikov, Andrei A. ; Vinokurov, Vladimir A. ; Harvey, Daniel H. S. ; Shchukin, Dmitry ; Friedrich, Dennis ; van de Krol, Roel ; Wang, Hongqiang</creator><creatorcontrib>Jian, Jie ; Wang, Shiyuan ; Ye, Qian ; Li, Fan ; Su, Guirong ; Liu, Wei ; Qu, Changzhen ; Liu, Feng ; Li, Can ; Jia, Lichao ; Novikov, Andrei A. ; Vinokurov, Vladimir A. ; Harvey, Daniel H. S. ; Shchukin, Dmitry ; Friedrich, Dennis ; van de Krol, Roel ; Wang, Hongqiang</creatorcontrib><description>The semiconductor–liquid junction (SCLJ), the dominant place in photoelectrochemical (PEC) catalysis, determines the interfacial activity and stability of photoelectrodes, whcih directly affects the viability of PEC hydrogen generation. Though efforts dedicated in past decades, a challenge remains regarding creating a synchronously active and stable SCLJ, owing to the technical hurdles of simultaneously overlaying the two advantages. The present work demonstrates that creating an SCLJ with a unique configuration of the dual interfacial layers can yield BiVO4 photoanodes with synchronously boosted photoelectrochemical activity and operational stability, with values located at the top in the records of such photoelectrodes. The bespoke dual interfacial layers, accessed via grafting laser‐generated carbon dots with phenolic hydroxyl groups (LGCDs‐PHGs), are experimentally verified effective, not only in generating the uniform layer of LGCDs with covalent anchoring for inhibited photocorrosion, but also in activating, respectively, the charge separation and transfer in each layer for boosted charge‐carrier kinetics, resulting in FeNiOOH–LGCDs‐PHGs–MBVO photoanodes with a dual configuration with the photocurrent density of 6.08 mA cm−2 @ 1.23 VRHE, and operational stability up to 120 h @ 1.23 VRHE. Further work exploring LGCDs‐PHGs from catecholic molecules warrants the proposed strategy as being a universal alternative for addressing the interfacial charge‐carrier kinetics and operational stability of semiconductor photoelectrodes. Dual interfacial layers, composed of a top covalent anchored carbon dots layer and a Mo:BiVO4 shallow layer with enriched oxygen vacancies, are constructed to synchronously boost charge‐carrier kinetics and inhibit photocorrosion, which results in a BiVO4 photoanode with a photocurrent density of 6.08 mA cm−2, and operational stability up to 120 h at 1.23 VRHE.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202201140</identifier><identifier>PMID: 35244311</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>BiVO 4 photoanodes ; Charge transfer ; Configurations ; Current carriers ; functional carbon dots ; Hydrogen production ; Hydroxyl groups ; Interface stability ; Kinetics ; Materials science ; PEC water splitting ; Photoelectric effect ; pulsed laser irradiation ; semiconductor–liquid junction engineering ; Water splitting</subject><ispartof>Advanced materials (Weinheim), 2022-05, Vol.34 (19), p.e2201140-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-e5723a5bd80e8b2ee8cbbb734e3a45185e2019df7e631b375b384671b4eaab783</citedby><cites>FETCH-LOGICAL-c3730-e5723a5bd80e8b2ee8cbbb734e3a45185e2019df7e631b375b384671b4eaab783</cites><orcidid>0000-0003-1262-1958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202201140$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202201140$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35244311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jian, Jie</creatorcontrib><creatorcontrib>Wang, Shiyuan</creatorcontrib><creatorcontrib>Ye, Qian</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Su, Guirong</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Qu, Changzhen</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Li, Can</creatorcontrib><creatorcontrib>Jia, Lichao</creatorcontrib><creatorcontrib>Novikov, Andrei A.</creatorcontrib><creatorcontrib>Vinokurov, Vladimir A.</creatorcontrib><creatorcontrib>Harvey, Daniel H. S.</creatorcontrib><creatorcontrib>Shchukin, Dmitry</creatorcontrib><creatorcontrib>Friedrich, Dennis</creatorcontrib><creatorcontrib>van de Krol, Roel</creatorcontrib><creatorcontrib>Wang, Hongqiang</creatorcontrib><title>Activating a Semiconductor–Liquid Junction via Laser‐Derived Dual Interfacial Layers for Boosted Photoelectrochemical Water Splitting</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The semiconductor–liquid junction (SCLJ), the dominant place in photoelectrochemical (PEC) catalysis, determines the interfacial activity and stability of photoelectrodes, whcih directly affects the viability of PEC hydrogen generation. Though efforts dedicated in past decades, a challenge remains regarding creating a synchronously active and stable SCLJ, owing to the technical hurdles of simultaneously overlaying the two advantages. The present work demonstrates that creating an SCLJ with a unique configuration of the dual interfacial layers can yield BiVO4 photoanodes with synchronously boosted photoelectrochemical activity and operational stability, with values located at the top in the records of such photoelectrodes. The bespoke dual interfacial layers, accessed via grafting laser‐generated carbon dots with phenolic hydroxyl groups (LGCDs‐PHGs), are experimentally verified effective, not only in generating the uniform layer of LGCDs with covalent anchoring for inhibited photocorrosion, but also in activating, respectively, the charge separation and transfer in each layer for boosted charge‐carrier kinetics, resulting in FeNiOOH–LGCDs‐PHGs–MBVO photoanodes with a dual configuration with the photocurrent density of 6.08 mA cm−2 @ 1.23 VRHE, and operational stability up to 120 h @ 1.23 VRHE. Further work exploring LGCDs‐PHGs from catecholic molecules warrants the proposed strategy as being a universal alternative for addressing the interfacial charge‐carrier kinetics and operational stability of semiconductor photoelectrodes. Dual interfacial layers, composed of a top covalent anchored carbon dots layer and a Mo:BiVO4 shallow layer with enriched oxygen vacancies, are constructed to synchronously boost charge‐carrier kinetics and inhibit photocorrosion, which results in a BiVO4 photoanode with a photocurrent density of 6.08 mA cm−2, and operational stability up to 120 h at 1.23 VRHE.</description><subject>BiVO 4 photoanodes</subject><subject>Charge transfer</subject><subject>Configurations</subject><subject>Current carriers</subject><subject>functional carbon dots</subject><subject>Hydrogen production</subject><subject>Hydroxyl groups</subject><subject>Interface stability</subject><subject>Kinetics</subject><subject>Materials science</subject><subject>PEC water splitting</subject><subject>Photoelectric effect</subject><subject>pulsed laser irradiation</subject><subject>semiconductor–liquid junction engineering</subject><subject>Water splitting</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqF0U1v1DAQBmALgehSuHJElrhwyeLvJMely0erIJAK4hjZzoS6SuKt7SzaG1dulfoP-SX1akuRuHCyJT8zY82L0HNKlpQQ9lp3o14ywhihVJAHaEElo4UgtXyIFqTmsqiVqI7QkxgvCSG1IuoxOuKSCcEpXaBfK5vcVic3fccan8PorJ-62SYffv-8adzV7Dp8Nk9Z-QlvncaNjpDfrtcQ3BY6vJ71gE-nBKHX1uV7o3cQIu59wG-8jymbzxc-eRjApuDtxX5Idt90rsHnm8Gl_fin6FGvhwjP7s5j9PXd2y8nH4rm0_vTk1VTWF5yUoAsGdfSdBWByjCAyhpjSi6AayFpJSGvou76EhSnhpfS8EqokhoBWpuy4sfo1aHvJvirGWJqRxctDIOewM-xZYqrvEqhaKYv_6GXfg5T_l1WigkmVcWzWh6UDT7GAH27CW7UYddS0u5Davchtfch5YIXd21nM0J3z_-kkkF9AD_cALv_tGtX64-rv81vAYP2oWY</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Jian, Jie</creator><creator>Wang, Shiyuan</creator><creator>Ye, Qian</creator><creator>Li, Fan</creator><creator>Su, Guirong</creator><creator>Liu, Wei</creator><creator>Qu, Changzhen</creator><creator>Liu, Feng</creator><creator>Li, Can</creator><creator>Jia, Lichao</creator><creator>Novikov, Andrei A.</creator><creator>Vinokurov, Vladimir A.</creator><creator>Harvey, Daniel H. S.</creator><creator>Shchukin, Dmitry</creator><creator>Friedrich, Dennis</creator><creator>van de Krol, Roel</creator><creator>Wang, Hongqiang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1262-1958</orcidid></search><sort><creationdate>20220501</creationdate><title>Activating a Semiconductor–Liquid Junction via Laser‐Derived Dual Interfacial Layers for Boosted Photoelectrochemical Water Splitting</title><author>Jian, Jie ; Wang, Shiyuan ; Ye, Qian ; Li, Fan ; Su, Guirong ; Liu, Wei ; Qu, Changzhen ; Liu, Feng ; Li, Can ; Jia, Lichao ; Novikov, Andrei A. ; Vinokurov, Vladimir A. ; Harvey, Daniel H. S. ; Shchukin, Dmitry ; Friedrich, Dennis ; van de Krol, Roel ; Wang, Hongqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-e5723a5bd80e8b2ee8cbbb734e3a45185e2019df7e631b375b384671b4eaab783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>BiVO 4 photoanodes</topic><topic>Charge transfer</topic><topic>Configurations</topic><topic>Current carriers</topic><topic>functional carbon dots</topic><topic>Hydrogen production</topic><topic>Hydroxyl groups</topic><topic>Interface stability</topic><topic>Kinetics</topic><topic>Materials science</topic><topic>PEC water splitting</topic><topic>Photoelectric effect</topic><topic>pulsed laser irradiation</topic><topic>semiconductor–liquid junction engineering</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jian, Jie</creatorcontrib><creatorcontrib>Wang, Shiyuan</creatorcontrib><creatorcontrib>Ye, Qian</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Su, Guirong</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Qu, Changzhen</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Li, Can</creatorcontrib><creatorcontrib>Jia, Lichao</creatorcontrib><creatorcontrib>Novikov, Andrei A.</creatorcontrib><creatorcontrib>Vinokurov, Vladimir A.</creatorcontrib><creatorcontrib>Harvey, Daniel H. S.</creatorcontrib><creatorcontrib>Shchukin, Dmitry</creatorcontrib><creatorcontrib>Friedrich, Dennis</creatorcontrib><creatorcontrib>van de Krol, Roel</creatorcontrib><creatorcontrib>Wang, Hongqiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jian, Jie</au><au>Wang, Shiyuan</au><au>Ye, Qian</au><au>Li, Fan</au><au>Su, Guirong</au><au>Liu, Wei</au><au>Qu, Changzhen</au><au>Liu, Feng</au><au>Li, Can</au><au>Jia, Lichao</au><au>Novikov, Andrei A.</au><au>Vinokurov, Vladimir A.</au><au>Harvey, Daniel H. S.</au><au>Shchukin, Dmitry</au><au>Friedrich, Dennis</au><au>van de Krol, Roel</au><au>Wang, Hongqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activating a Semiconductor–Liquid Junction via Laser‐Derived Dual Interfacial Layers for Boosted Photoelectrochemical Water Splitting</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>34</volume><issue>19</issue><spage>e2201140</spage><epage>n/a</epage><pages>e2201140-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The semiconductor–liquid junction (SCLJ), the dominant place in photoelectrochemical (PEC) catalysis, determines the interfacial activity and stability of photoelectrodes, whcih directly affects the viability of PEC hydrogen generation. Though efforts dedicated in past decades, a challenge remains regarding creating a synchronously active and stable SCLJ, owing to the technical hurdles of simultaneously overlaying the two advantages. The present work demonstrates that creating an SCLJ with a unique configuration of the dual interfacial layers can yield BiVO4 photoanodes with synchronously boosted photoelectrochemical activity and operational stability, with values located at the top in the records of such photoelectrodes. The bespoke dual interfacial layers, accessed via grafting laser‐generated carbon dots with phenolic hydroxyl groups (LGCDs‐PHGs), are experimentally verified effective, not only in generating the uniform layer of LGCDs with covalent anchoring for inhibited photocorrosion, but also in activating, respectively, the charge separation and transfer in each layer for boosted charge‐carrier kinetics, resulting in FeNiOOH–LGCDs‐PHGs–MBVO photoanodes with a dual configuration with the photocurrent density of 6.08 mA cm−2 @ 1.23 VRHE, and operational stability up to 120 h @ 1.23 VRHE. Further work exploring LGCDs‐PHGs from catecholic molecules warrants the proposed strategy as being a universal alternative for addressing the interfacial charge‐carrier kinetics and operational stability of semiconductor photoelectrodes. Dual interfacial layers, composed of a top covalent anchored carbon dots layer and a Mo:BiVO4 shallow layer with enriched oxygen vacancies, are constructed to synchronously boost charge‐carrier kinetics and inhibit photocorrosion, which results in a BiVO4 photoanode with a photocurrent density of 6.08 mA cm−2, and operational stability up to 120 h at 1.23 VRHE.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35244311</pmid><doi>10.1002/adma.202201140</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1262-1958</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-05, Vol.34 (19), p.e2201140-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2636140461
source Wiley Online Library Journals Frontfile Complete
subjects BiVO 4 photoanodes
Charge transfer
Configurations
Current carriers
functional carbon dots
Hydrogen production
Hydroxyl groups
Interface stability
Kinetics
Materials science
PEC water splitting
Photoelectric effect
pulsed laser irradiation
semiconductor–liquid junction engineering
Water splitting
title Activating a Semiconductor–Liquid Junction via Laser‐Derived Dual Interfacial Layers for Boosted Photoelectrochemical Water Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activating%20a%20Semiconductor%E2%80%93Liquid%20Junction%20via%20Laser%E2%80%90Derived%20Dual%20Interfacial%20Layers%20for%20Boosted%20Photoelectrochemical%20Water%20Splitting&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Jian,%20Jie&rft.date=2022-05-01&rft.volume=34&rft.issue=19&rft.spage=e2201140&rft.epage=n/a&rft.pages=e2201140-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202201140&rft_dat=%3Cproquest_cross%3E2662425683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2662425683&rft_id=info:pmid/35244311&rfr_iscdi=true