High-Throughput Screening of Rattling-Induced Ultralow Lattice Thermal Conductivity in Semiconductors

Thermoelectric (TE) materials with rattling model show ultralow lattice thermal conductivity for high-efficient energy conversion between heat and electricity. In this work, by analysis of the key spirit of the rattling model, we propose an efficient empirical descriptor to realize the high-throughp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2022-03, Vol.144 (10), p.4448-4456
Hauptverfasser: Li, Jielan, Hu, Wei, Yang, Jinlong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4456
container_issue 10
container_start_page 4448
container_title Journal of the American Chemical Society
container_volume 144
creator Li, Jielan
Hu, Wei
Yang, Jinlong
description Thermoelectric (TE) materials with rattling model show ultralow lattice thermal conductivity for high-efficient energy conversion between heat and electricity. In this work, by analysis of the key spirit of the rattling model, we propose an efficient empirical descriptor to realize the high-throughput screening of ultralow thermal conductivity in a series of semiconductors. This descriptor extracts the structural information of rattling atoms whose bond lengths with all the nearest neighboring atoms are larger than the sum of corresponding covalent radiuses. We obtain 1171 candidates from the Materials Project (MP) Database that contains more than 100 000 materials. Combining the empirical equation of high-throughput computation with a machine learning algorithm, we compute the approximate lattice thermal conductivities (κL) and find the κL values of 532 materials are less than 2.0 W m–1 K–1 at 300 K, which can be regarded as the criteria of ultralow κL in general. In particular, we demonstrate that halide double perovskites structures show ultralow κL, which provides valuable references for promising low κL materials in future experiments. In order to further verify our computational results, we calculate accurate κL for Rb2SnBr6 and CsCu3O2 as candidates with the low lattice thermal conductivity by solving the phonon Boltzmann transport equation. In particular, we demonstrate that Rb2SnBr6 has the lowest κL value of 0.1 W m–1 K–1 at 300 K of all known thermal conductivity materials with the rattling model so far.
doi_str_mv 10.1021/jacs.1c11887
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2635248919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635248919</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-d9109470e72c86d307785b465701d982c0e4455c40df71fcc20fcd9dcffd64153</originalsourceid><addsrcrecordid>eNptkM9PwjAUxxujEURvnk2PHhy2Xbt2R0NUSEhMBM5LaTso2VZsOw3_vVtAvXh6vz7v-_K-ANxiNMaI4MedVGGMFcZC8DMwxIyghGGSnYMhQogkXGTpAFyFsOtKSgS-BIOUkRQJIobATO1mmyy33rWb7b6NcKG8MY1tNtCV8F3GWHV5Mmt0q4yGqyp6WbkvOO8mVhm43BpfywpOXE9E-2njAdoGLkxt1bHnfLgGF6Wsgrk5xRFYvTwvJ9Nk_vY6mzzNE5nmKCY6xyinHBlOlMh0ijgXbE0zxhHWuSAKGUoZUxTpkuNSKYJKpXOtylJnFLN0BO6PunvvPloTYlHboExVyca4NhQk6z6nIsd5hz4cUeVdCN6Uxd7bWvpDgVHRG1v0xhYnYzv87qTcrmujf-EfJ_9O91s71_qme_R_rW-V24I9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635248919</pqid></control><display><type>article</type><title>High-Throughput Screening of Rattling-Induced Ultralow Lattice Thermal Conductivity in Semiconductors</title><source>American Chemical Society</source><creator>Li, Jielan ; Hu, Wei ; Yang, Jinlong</creator><creatorcontrib>Li, Jielan ; Hu, Wei ; Yang, Jinlong</creatorcontrib><description>Thermoelectric (TE) materials with rattling model show ultralow lattice thermal conductivity for high-efficient energy conversion between heat and electricity. In this work, by analysis of the key spirit of the rattling model, we propose an efficient empirical descriptor to realize the high-throughput screening of ultralow thermal conductivity in a series of semiconductors. This descriptor extracts the structural information of rattling atoms whose bond lengths with all the nearest neighboring atoms are larger than the sum of corresponding covalent radiuses. We obtain 1171 candidates from the Materials Project (MP) Database that contains more than 100 000 materials. Combining the empirical equation of high-throughput computation with a machine learning algorithm, we compute the approximate lattice thermal conductivities (κL) and find the κL values of 532 materials are less than 2.0 W m–1 K–1 at 300 K, which can be regarded as the criteria of ultralow κL in general. In particular, we demonstrate that halide double perovskites structures show ultralow κL, which provides valuable references for promising low κL materials in future experiments. In order to further verify our computational results, we calculate accurate κL for Rb2SnBr6 and CsCu3O2 as candidates with the low lattice thermal conductivity by solving the phonon Boltzmann transport equation. In particular, we demonstrate that Rb2SnBr6 has the lowest κL value of 0.1 W m–1 K–1 at 300 K of all known thermal conductivity materials with the rattling model so far.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c11887</identifier><identifier>PMID: 35230828</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2022-03, Vol.144 (10), p.4448-4456</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-d9109470e72c86d307785b465701d982c0e4455c40df71fcc20fcd9dcffd64153</citedby><cites>FETCH-LOGICAL-a390t-d9109470e72c86d307785b465701d982c0e4455c40df71fcc20fcd9dcffd64153</cites><orcidid>0000-0002-5651-5340 ; 0000-0001-9629-2121 ; 0000-0003-4428-2452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.1c11887$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.1c11887$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35230828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jielan</creatorcontrib><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Yang, Jinlong</creatorcontrib><title>High-Throughput Screening of Rattling-Induced Ultralow Lattice Thermal Conductivity in Semiconductors</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Thermoelectric (TE) materials with rattling model show ultralow lattice thermal conductivity for high-efficient energy conversion between heat and electricity. In this work, by analysis of the key spirit of the rattling model, we propose an efficient empirical descriptor to realize the high-throughput screening of ultralow thermal conductivity in a series of semiconductors. This descriptor extracts the structural information of rattling atoms whose bond lengths with all the nearest neighboring atoms are larger than the sum of corresponding covalent radiuses. We obtain 1171 candidates from the Materials Project (MP) Database that contains more than 100 000 materials. Combining the empirical equation of high-throughput computation with a machine learning algorithm, we compute the approximate lattice thermal conductivities (κL) and find the κL values of 532 materials are less than 2.0 W m–1 K–1 at 300 K, which can be regarded as the criteria of ultralow κL in general. In particular, we demonstrate that halide double perovskites structures show ultralow κL, which provides valuable references for promising low κL materials in future experiments. In order to further verify our computational results, we calculate accurate κL for Rb2SnBr6 and CsCu3O2 as candidates with the low lattice thermal conductivity by solving the phonon Boltzmann transport equation. In particular, we demonstrate that Rb2SnBr6 has the lowest κL value of 0.1 W m–1 K–1 at 300 K of all known thermal conductivity materials with the rattling model so far.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkM9PwjAUxxujEURvnk2PHhy2Xbt2R0NUSEhMBM5LaTso2VZsOw3_vVtAvXh6vz7v-_K-ANxiNMaI4MedVGGMFcZC8DMwxIyghGGSnYMhQogkXGTpAFyFsOtKSgS-BIOUkRQJIobATO1mmyy33rWb7b6NcKG8MY1tNtCV8F3GWHV5Mmt0q4yGqyp6WbkvOO8mVhm43BpfywpOXE9E-2njAdoGLkxt1bHnfLgGF6Wsgrk5xRFYvTwvJ9Nk_vY6mzzNE5nmKCY6xyinHBlOlMh0ijgXbE0zxhHWuSAKGUoZUxTpkuNSKYJKpXOtylJnFLN0BO6PunvvPloTYlHboExVyca4NhQk6z6nIsd5hz4cUeVdCN6Uxd7bWvpDgVHRG1v0xhYnYzv87qTcrmujf-EfJ_9O91s71_qme_R_rW-V24I9</recordid><startdate>20220316</startdate><enddate>20220316</enddate><creator>Li, Jielan</creator><creator>Hu, Wei</creator><creator>Yang, Jinlong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5651-5340</orcidid><orcidid>https://orcid.org/0000-0001-9629-2121</orcidid><orcidid>https://orcid.org/0000-0003-4428-2452</orcidid></search><sort><creationdate>20220316</creationdate><title>High-Throughput Screening of Rattling-Induced Ultralow Lattice Thermal Conductivity in Semiconductors</title><author>Li, Jielan ; Hu, Wei ; Yang, Jinlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-d9109470e72c86d307785b465701d982c0e4455c40df71fcc20fcd9dcffd64153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jielan</creatorcontrib><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Yang, Jinlong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jielan</au><au>Hu, Wei</au><au>Yang, Jinlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Throughput Screening of Rattling-Induced Ultralow Lattice Thermal Conductivity in Semiconductors</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2022-03-16</date><risdate>2022</risdate><volume>144</volume><issue>10</issue><spage>4448</spage><epage>4456</epage><pages>4448-4456</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Thermoelectric (TE) materials with rattling model show ultralow lattice thermal conductivity for high-efficient energy conversion between heat and electricity. In this work, by analysis of the key spirit of the rattling model, we propose an efficient empirical descriptor to realize the high-throughput screening of ultralow thermal conductivity in a series of semiconductors. This descriptor extracts the structural information of rattling atoms whose bond lengths with all the nearest neighboring atoms are larger than the sum of corresponding covalent radiuses. We obtain 1171 candidates from the Materials Project (MP) Database that contains more than 100 000 materials. Combining the empirical equation of high-throughput computation with a machine learning algorithm, we compute the approximate lattice thermal conductivities (κL) and find the κL values of 532 materials are less than 2.0 W m–1 K–1 at 300 K, which can be regarded as the criteria of ultralow κL in general. In particular, we demonstrate that halide double perovskites structures show ultralow κL, which provides valuable references for promising low κL materials in future experiments. In order to further verify our computational results, we calculate accurate κL for Rb2SnBr6 and CsCu3O2 as candidates with the low lattice thermal conductivity by solving the phonon Boltzmann transport equation. In particular, we demonstrate that Rb2SnBr6 has the lowest κL value of 0.1 W m–1 K–1 at 300 K of all known thermal conductivity materials with the rattling model so far.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35230828</pmid><doi>10.1021/jacs.1c11887</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5651-5340</orcidid><orcidid>https://orcid.org/0000-0001-9629-2121</orcidid><orcidid>https://orcid.org/0000-0003-4428-2452</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2022-03, Vol.144 (10), p.4448-4456
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2635248919
source American Chemical Society
title High-Throughput Screening of Rattling-Induced Ultralow Lattice Thermal Conductivity in Semiconductors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Throughput%20Screening%20of%20Rattling-Induced%20Ultralow%20Lattice%20Thermal%20Conductivity%20in%20Semiconductors&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Li,%20Jielan&rft.date=2022-03-16&rft.volume=144&rft.issue=10&rft.spage=4448&rft.epage=4456&rft.pages=4448-4456&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c11887&rft_dat=%3Cproquest_cross%3E2635248919%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635248919&rft_id=info:pmid/35230828&rfr_iscdi=true