Motion correction for three‐dimensional chemical exchange saturation transfer imaging without direct water saturation artifacts

In chemical exchange saturation transfer (CEST) MRI, motion correction is compromised by the drastically changing image contrast at different frequency offsets, particularly at the direct water saturation. In this study, a simple extension for conventional image registration algorithms is proposed,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NMR in biomedicine 2022-07, Vol.35 (7), p.e4720-n/a
Hauptverfasser: Breitling, Johannes, Korzowski, Andreas, Kempa, Neele, Boyd, Philip S., Paech, Daniel, Schlemmer, Heinz‐Peter, Ladd, Mark E., Bachert, Peter, Goerke, Steffen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page e4720
container_title NMR in biomedicine
container_volume 35
creator Breitling, Johannes
Korzowski, Andreas
Kempa, Neele
Boyd, Philip S.
Paech, Daniel
Schlemmer, Heinz‐Peter
Ladd, Mark E.
Bachert, Peter
Goerke, Steffen
description In chemical exchange saturation transfer (CEST) MRI, motion correction is compromised by the drastically changing image contrast at different frequency offsets, particularly at the direct water saturation. In this study, a simple extension for conventional image registration algorithms is proposed, enabling robust and accurate motion correction of CEST‐MRI data. The proposed method uses weighted averaging of motion parameters from a conventional rigid image registration to identify and mitigate erroneously misaligned images. Functionality of the proposed method was verified by ground truth datasets generated from 10 three‐dimensional in vivo measurements at 3 T with simulated realistic random rigid motion patterns and noise. Performance was assessed using two different criteria: the maximum image misalignment as a measure for the robustness against direct water saturation artifacts, and the spectral error as a measure of the overall accuracy. For both criteria, the proposed method achieved the best scores compared with two motion‐correction algorithms specifically developed to handle the varying contrasts in CEST‐MRI. Compared with a straightforward linear interpolation of the motion parameters at frequency offsets close to the direct water saturation, the proposed method offers better performance in the absence of artifacts. The proposed method for motion correction in CEST‐MRI allows identification and mitigation of direct water saturation artifacts that occur with conventional image registration algorithms. The resulting improved robustness and accuracy enable reliable motion correction, which is particularly crucial for an automated and carefree evaluation of spectral CEST‐MRI data, e.g., for large patient cohorts or in clinical routines. In this study, a simple extension for conventional image registration algorithms is proposed, enabling robust and accurate motion correction of CEST‐MRI data without direct water saturation artifacts. The performance of different approaches was investigated using ground truth datasets, generated from 10 3D in vivo measurements at 3 T, corrupted with realistic random rigid motion patterns and noise. In comparison with other approaches, the proposed method achieved more accurate and robust results.
doi_str_mv 10.1002/nbm.4720
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2635246238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676384781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3830-b1c63230b5e96f3c27c6302f640118890a3655c159543cfc4130f922bd59f74a3</originalsourceid><addsrcrecordid>eNp1kctOxCAUhonR6Dia-ASmiRs31cOlF5ZqvCVeNrpuKAMzmLYo0Izu9A18Rp9EOl5j4ooDfOcjnB-hLQx7GIDsd3W7xwoCS2iEgfMUM06W0Qh4RlLKSlhD697fAUDJKFlFazQjlJasGKGXSxuM7RJpnVNyUWrrkjBzSr09v05MqzofT0WTyJlqjYyFepQz0U1V4kXonVg0BSc6r5VLTCumppsmcxNmtg_JxAzeZC5CvPzVIFwwWsjgN9CKFo1Xm5_rGN2eHN8cnaUX16fnRwcXqaQlhbTGMqeEQp0pnmsqSRH3QHTOAOOy5CBonmUSZzxjVGrJMAXNCaknGdcFE3SMdj-8984-9MqHqjVeqqYRnbK9r0gep8JyEl8bo50_6J3tXZzBQBX5MLkS_wils947pat7F3_vnioM1RBLFWOphlgiuv0p7OtWTb7BrxwikH4Ac9Oop39F1dXh5UL4DryZmLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676384781</pqid></control><display><type>article</type><title>Motion correction for three‐dimensional chemical exchange saturation transfer imaging without direct water saturation artifacts</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Breitling, Johannes ; Korzowski, Andreas ; Kempa, Neele ; Boyd, Philip S. ; Paech, Daniel ; Schlemmer, Heinz‐Peter ; Ladd, Mark E. ; Bachert, Peter ; Goerke, Steffen</creator><creatorcontrib>Breitling, Johannes ; Korzowski, Andreas ; Kempa, Neele ; Boyd, Philip S. ; Paech, Daniel ; Schlemmer, Heinz‐Peter ; Ladd, Mark E. ; Bachert, Peter ; Goerke, Steffen</creatorcontrib><description>In chemical exchange saturation transfer (CEST) MRI, motion correction is compromised by the drastically changing image contrast at different frequency offsets, particularly at the direct water saturation. In this study, a simple extension for conventional image registration algorithms is proposed, enabling robust and accurate motion correction of CEST‐MRI data. The proposed method uses weighted averaging of motion parameters from a conventional rigid image registration to identify and mitigate erroneously misaligned images. Functionality of the proposed method was verified by ground truth datasets generated from 10 three‐dimensional in vivo measurements at 3 T with simulated realistic random rigid motion patterns and noise. Performance was assessed using two different criteria: the maximum image misalignment as a measure for the robustness against direct water saturation artifacts, and the spectral error as a measure of the overall accuracy. For both criteria, the proposed method achieved the best scores compared with two motion‐correction algorithms specifically developed to handle the varying contrasts in CEST‐MRI. Compared with a straightforward linear interpolation of the motion parameters at frequency offsets close to the direct water saturation, the proposed method offers better performance in the absence of artifacts. The proposed method for motion correction in CEST‐MRI allows identification and mitigation of direct water saturation artifacts that occur with conventional image registration algorithms. The resulting improved robustness and accuracy enable reliable motion correction, which is particularly crucial for an automated and carefree evaluation of spectral CEST‐MRI data, e.g., for large patient cohorts or in clinical routines. In this study, a simple extension for conventional image registration algorithms is proposed, enabling robust and accurate motion correction of CEST‐MRI data without direct water saturation artifacts. The performance of different approaches was investigated using ground truth datasets, generated from 10 3D in vivo measurements at 3 T, corrupted with realistic random rigid motion patterns and noise. In comparison with other approaches, the proposed method achieved more accurate and robust results.</description><identifier>ISSN: 0952-3480</identifier><identifier>EISSN: 1099-1492</identifier><identifier>DOI: 10.1002/nbm.4720</identifier><identifier>PMID: 35233847</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Biological products ; chemical exchange saturation transfer ; Criteria ; Error analysis ; Humans ; Image contrast ; Image registration ; Interpolation ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Misalignment ; Mitigation ; Motion ; motion correction ; MRI ; Offsets ; Parameter identification ; Registration ; Robustness ; Saturation ; Water</subject><ispartof>NMR in biomedicine, 2022-07, Vol.35 (7), p.e4720-n/a</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2022 The Authors. NMR in Biomedicine published by John Wiley &amp; Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3830-b1c63230b5e96f3c27c6302f640118890a3655c159543cfc4130f922bd59f74a3</citedby><cites>FETCH-LOGICAL-c3830-b1c63230b5e96f3c27c6302f640118890a3655c159543cfc4130f922bd59f74a3</cites><orcidid>0000-0002-9291-0954 ; 0000-0002-9384-7686 ; 0000-0002-5914-2535 ; 0000-0002-0684-2423 ; 0000-0001-8003-5382 ; 0000-0002-4128-9440 ; 0000-0001-5755-6833 ; 0000-0002-0244-9712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnbm.4720$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnbm.4720$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35233847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Breitling, Johannes</creatorcontrib><creatorcontrib>Korzowski, Andreas</creatorcontrib><creatorcontrib>Kempa, Neele</creatorcontrib><creatorcontrib>Boyd, Philip S.</creatorcontrib><creatorcontrib>Paech, Daniel</creatorcontrib><creatorcontrib>Schlemmer, Heinz‐Peter</creatorcontrib><creatorcontrib>Ladd, Mark E.</creatorcontrib><creatorcontrib>Bachert, Peter</creatorcontrib><creatorcontrib>Goerke, Steffen</creatorcontrib><title>Motion correction for three‐dimensional chemical exchange saturation transfer imaging without direct water saturation artifacts</title><title>NMR in biomedicine</title><addtitle>NMR Biomed</addtitle><description>In chemical exchange saturation transfer (CEST) MRI, motion correction is compromised by the drastically changing image contrast at different frequency offsets, particularly at the direct water saturation. In this study, a simple extension for conventional image registration algorithms is proposed, enabling robust and accurate motion correction of CEST‐MRI data. The proposed method uses weighted averaging of motion parameters from a conventional rigid image registration to identify and mitigate erroneously misaligned images. Functionality of the proposed method was verified by ground truth datasets generated from 10 three‐dimensional in vivo measurements at 3 T with simulated realistic random rigid motion patterns and noise. Performance was assessed using two different criteria: the maximum image misalignment as a measure for the robustness against direct water saturation artifacts, and the spectral error as a measure of the overall accuracy. For both criteria, the proposed method achieved the best scores compared with two motion‐correction algorithms specifically developed to handle the varying contrasts in CEST‐MRI. Compared with a straightforward linear interpolation of the motion parameters at frequency offsets close to the direct water saturation, the proposed method offers better performance in the absence of artifacts. The proposed method for motion correction in CEST‐MRI allows identification and mitigation of direct water saturation artifacts that occur with conventional image registration algorithms. The resulting improved robustness and accuracy enable reliable motion correction, which is particularly crucial for an automated and carefree evaluation of spectral CEST‐MRI data, e.g., for large patient cohorts or in clinical routines. In this study, a simple extension for conventional image registration algorithms is proposed, enabling robust and accurate motion correction of CEST‐MRI data without direct water saturation artifacts. The performance of different approaches was investigated using ground truth datasets, generated from 10 3D in vivo measurements at 3 T, corrupted with realistic random rigid motion patterns and noise. In comparison with other approaches, the proposed method achieved more accurate and robust results.</description><subject>Algorithms</subject><subject>Biological products</subject><subject>chemical exchange saturation transfer</subject><subject>Criteria</subject><subject>Error analysis</subject><subject>Humans</subject><subject>Image contrast</subject><subject>Image registration</subject><subject>Interpolation</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Misalignment</subject><subject>Mitigation</subject><subject>Motion</subject><subject>motion correction</subject><subject>MRI</subject><subject>Offsets</subject><subject>Parameter identification</subject><subject>Registration</subject><subject>Robustness</subject><subject>Saturation</subject><subject>Water</subject><issn>0952-3480</issn><issn>1099-1492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kctOxCAUhonR6Dia-ASmiRs31cOlF5ZqvCVeNrpuKAMzmLYo0Izu9A18Rp9EOl5j4ooDfOcjnB-hLQx7GIDsd3W7xwoCS2iEgfMUM06W0Qh4RlLKSlhD697fAUDJKFlFazQjlJasGKGXSxuM7RJpnVNyUWrrkjBzSr09v05MqzofT0WTyJlqjYyFepQz0U1V4kXonVg0BSc6r5VLTCumppsmcxNmtg_JxAzeZC5CvPzVIFwwWsjgN9CKFo1Xm5_rGN2eHN8cnaUX16fnRwcXqaQlhbTGMqeEQp0pnmsqSRH3QHTOAOOy5CBonmUSZzxjVGrJMAXNCaknGdcFE3SMdj-8984-9MqHqjVeqqYRnbK9r0gep8JyEl8bo50_6J3tXZzBQBX5MLkS_wils947pat7F3_vnioM1RBLFWOphlgiuv0p7OtWTb7BrxwikH4Ac9Oop39F1dXh5UL4DryZmLM</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Breitling, Johannes</creator><creator>Korzowski, Andreas</creator><creator>Kempa, Neele</creator><creator>Boyd, Philip S.</creator><creator>Paech, Daniel</creator><creator>Schlemmer, Heinz‐Peter</creator><creator>Ladd, Mark E.</creator><creator>Bachert, Peter</creator><creator>Goerke, Steffen</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9291-0954</orcidid><orcidid>https://orcid.org/0000-0002-9384-7686</orcidid><orcidid>https://orcid.org/0000-0002-5914-2535</orcidid><orcidid>https://orcid.org/0000-0002-0684-2423</orcidid><orcidid>https://orcid.org/0000-0001-8003-5382</orcidid><orcidid>https://orcid.org/0000-0002-4128-9440</orcidid><orcidid>https://orcid.org/0000-0001-5755-6833</orcidid><orcidid>https://orcid.org/0000-0002-0244-9712</orcidid></search><sort><creationdate>202207</creationdate><title>Motion correction for three‐dimensional chemical exchange saturation transfer imaging without direct water saturation artifacts</title><author>Breitling, Johannes ; Korzowski, Andreas ; Kempa, Neele ; Boyd, Philip S. ; Paech, Daniel ; Schlemmer, Heinz‐Peter ; Ladd, Mark E. ; Bachert, Peter ; Goerke, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3830-b1c63230b5e96f3c27c6302f640118890a3655c159543cfc4130f922bd59f74a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biological products</topic><topic>chemical exchange saturation transfer</topic><topic>Criteria</topic><topic>Error analysis</topic><topic>Humans</topic><topic>Image contrast</topic><topic>Image registration</topic><topic>Interpolation</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Misalignment</topic><topic>Mitigation</topic><topic>Motion</topic><topic>motion correction</topic><topic>MRI</topic><topic>Offsets</topic><topic>Parameter identification</topic><topic>Registration</topic><topic>Robustness</topic><topic>Saturation</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breitling, Johannes</creatorcontrib><creatorcontrib>Korzowski, Andreas</creatorcontrib><creatorcontrib>Kempa, Neele</creatorcontrib><creatorcontrib>Boyd, Philip S.</creatorcontrib><creatorcontrib>Paech, Daniel</creatorcontrib><creatorcontrib>Schlemmer, Heinz‐Peter</creatorcontrib><creatorcontrib>Ladd, Mark E.</creatorcontrib><creatorcontrib>Bachert, Peter</creatorcontrib><creatorcontrib>Goerke, Steffen</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NMR in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breitling, Johannes</au><au>Korzowski, Andreas</au><au>Kempa, Neele</au><au>Boyd, Philip S.</au><au>Paech, Daniel</au><au>Schlemmer, Heinz‐Peter</au><au>Ladd, Mark E.</au><au>Bachert, Peter</au><au>Goerke, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion correction for three‐dimensional chemical exchange saturation transfer imaging without direct water saturation artifacts</atitle><jtitle>NMR in biomedicine</jtitle><addtitle>NMR Biomed</addtitle><date>2022-07</date><risdate>2022</risdate><volume>35</volume><issue>7</issue><spage>e4720</spage><epage>n/a</epage><pages>e4720-n/a</pages><issn>0952-3480</issn><eissn>1099-1492</eissn><abstract>In chemical exchange saturation transfer (CEST) MRI, motion correction is compromised by the drastically changing image contrast at different frequency offsets, particularly at the direct water saturation. In this study, a simple extension for conventional image registration algorithms is proposed, enabling robust and accurate motion correction of CEST‐MRI data. The proposed method uses weighted averaging of motion parameters from a conventional rigid image registration to identify and mitigate erroneously misaligned images. Functionality of the proposed method was verified by ground truth datasets generated from 10 three‐dimensional in vivo measurements at 3 T with simulated realistic random rigid motion patterns and noise. Performance was assessed using two different criteria: the maximum image misalignment as a measure for the robustness against direct water saturation artifacts, and the spectral error as a measure of the overall accuracy. For both criteria, the proposed method achieved the best scores compared with two motion‐correction algorithms specifically developed to handle the varying contrasts in CEST‐MRI. Compared with a straightforward linear interpolation of the motion parameters at frequency offsets close to the direct water saturation, the proposed method offers better performance in the absence of artifacts. The proposed method for motion correction in CEST‐MRI allows identification and mitigation of direct water saturation artifacts that occur with conventional image registration algorithms. The resulting improved robustness and accuracy enable reliable motion correction, which is particularly crucial for an automated and carefree evaluation of spectral CEST‐MRI data, e.g., for large patient cohorts or in clinical routines. In this study, a simple extension for conventional image registration algorithms is proposed, enabling robust and accurate motion correction of CEST‐MRI data without direct water saturation artifacts. The performance of different approaches was investigated using ground truth datasets, generated from 10 3D in vivo measurements at 3 T, corrupted with realistic random rigid motion patterns and noise. In comparison with other approaches, the proposed method achieved more accurate and robust results.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35233847</pmid><doi>10.1002/nbm.4720</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9291-0954</orcidid><orcidid>https://orcid.org/0000-0002-9384-7686</orcidid><orcidid>https://orcid.org/0000-0002-5914-2535</orcidid><orcidid>https://orcid.org/0000-0002-0684-2423</orcidid><orcidid>https://orcid.org/0000-0001-8003-5382</orcidid><orcidid>https://orcid.org/0000-0002-4128-9440</orcidid><orcidid>https://orcid.org/0000-0001-5755-6833</orcidid><orcidid>https://orcid.org/0000-0002-0244-9712</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0952-3480
ispartof NMR in biomedicine, 2022-07, Vol.35 (7), p.e4720-n/a
issn 0952-3480
1099-1492
language eng
recordid cdi_proquest_miscellaneous_2635246238
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Biological products
chemical exchange saturation transfer
Criteria
Error analysis
Humans
Image contrast
Image registration
Interpolation
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Misalignment
Mitigation
Motion
motion correction
MRI
Offsets
Parameter identification
Registration
Robustness
Saturation
Water
title Motion correction for three‐dimensional chemical exchange saturation transfer imaging without direct water saturation artifacts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20correction%20for%20three%E2%80%90dimensional%20chemical%20exchange%20saturation%20transfer%20imaging%20without%20direct%20water%20saturation%20artifacts&rft.jtitle=NMR%20in%20biomedicine&rft.au=Breitling,%20Johannes&rft.date=2022-07&rft.volume=35&rft.issue=7&rft.spage=e4720&rft.epage=n/a&rft.pages=e4720-n/a&rft.issn=0952-3480&rft.eissn=1099-1492&rft_id=info:doi/10.1002/nbm.4720&rft_dat=%3Cproquest_cross%3E2676384781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676384781&rft_id=info:pmid/35233847&rfr_iscdi=true