Fine mapping of Pm58 from Aegilops tauschii conferring powdery mildew resistance
Key message The powdery mildew resistance gene Pm58 was traced to a 141.3-kb interval with the co-segregating marker Xkasp68500 in wheat breeding. Pm58 is a powdery mildew resistance gene identified in Aegilops tauschii accession TA1662 and effective in a common wheat background. To finely map Pm58...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 2022-05, Vol.135 (5), p.1657-1669 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1669 |
---|---|
container_issue | 5 |
container_start_page | 1657 |
container_title | Theoretical and applied genetics |
container_volume | 135 |
creator | Xue, Shulin Hu, Shanshan Chen, Xian Ma, Yuyu Lu, Mingxue Bai, Shenglong Wang, Xintian Sun, Tiepeng Wang, Yingxue Wan, Hongshen An, Xia Li, Suoping |
description | Key message
The powdery mildew resistance gene
Pm58
was traced to a 141.3-kb interval with the co-segregating marker
Xkasp68500
in wheat breeding.
Pm58
is a powdery mildew resistance gene identified in
Aegilops tauschii
accession TA1662 and effective in a common wheat background. To finely map
Pm58
, an F
2
population of 676 plants derived from the cross T093 × TA1662 was used for recombinant screening. We obtained 13 recombinants that occurred between the flanking markers
Xhnu670
and
Xhnu186
. Genotyping and phenotyping these recombinant F
2:3
families delimited
Pm58
to a 0.22-cM interval (
Xsts20220
–
Xkasp61553
) on chromosome arm 2DS. The region carrying the
Pm58
locus was approximately 141.3-kb, which contained eight annotated genes according to the reference genome sequence of
Ae. tauschii
AL8/78. Haplotype analysis of 178
Ae. tauschii
accessions using the candidate gene-specific markers identified a disease resistance gene
AET2Gv20068500
as a candidate for
Pm58.
Comparative mapping of the
Pm58-
containing interval revealed two presence/absence variations (PAVs) between AL8/78 and common wheat Chinese Spring. PAV-1 resides in the 3′-end of
AET2Gv20068500.
The majority of 158 common wheat cultivars (84.8%) displayed the absence of a 14.1-kb fragment in the PAV-1 region, which was confirmed by aligning the targeted genome sequences of the other sequenced
Ae. tauschii
accessions and common wheat cultivars. A co-segregating marker
Xkasp68500
developed from
AET2Gv20068500
can distinguish TA1662 from all randomly selected common wheat cultivars and will be instrumental for tracking
Pm58
in breeding programs. |
doi_str_mv | 10.1007/s00122-022-04061-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2635243239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A704053545</galeid><sourcerecordid>A704053545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-8b5876a488ff5aea0a4d4a740bf65d04fbaff212092a85986f3f92bedfb755ec3</originalsourceid><addsrcrecordid>eNp9kUtr3TAQhUVJaW7T_oEsgiCbduF0rIctLy-haQOBhrRdC9ke3SjYliPZpPn3lbl5cEMIYhAM3xlmziHkMIeTHKD8FgFyxjJYSkCRZ-odWeWCs4wxwfbIClI7k6Vk--RjjDcAwCTwD2SfS8ZFpeSKXJ65AWlvxtENG-otveylojb4nq5x4zo_RjqZOTbXztHGDxZDWMjR37UY7mnvuhbvaMDo4mSGBj-R99Z0ET8__Afk79n3P6c_s4tfP85P1xdZI8piylQtVVkYoZS10qABI1phSgG1LWQLwtbGWpYzqJhRslKF5bZiNba2LqXEhh-QL9u5Y_C3M8ZJ9y422HVmQD9HzYp0ZPKCVwk9foHe-DkMabtEFaKSUiT6idqYDrUbrJ-CaZahel0mIyWXQibq5BUqvRZ7l_xB61J_R_B1R5CYCf9Nm-Rp1Oe_r3ZZtmWb4GMMaPUYXG_Cvc5BL5HrbeQalloi1yqJjh6um-se2yfJY8YJ4Fsgjkt0GJ7Pf2Psf_YLs3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664955426</pqid></control><display><type>article</type><title>Fine mapping of Pm58 from Aegilops tauschii conferring powdery mildew resistance</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Xue, Shulin ; Hu, Shanshan ; Chen, Xian ; Ma, Yuyu ; Lu, Mingxue ; Bai, Shenglong ; Wang, Xintian ; Sun, Tiepeng ; Wang, Yingxue ; Wan, Hongshen ; An, Xia ; Li, Suoping</creator><creatorcontrib>Xue, Shulin ; Hu, Shanshan ; Chen, Xian ; Ma, Yuyu ; Lu, Mingxue ; Bai, Shenglong ; Wang, Xintian ; Sun, Tiepeng ; Wang, Yingxue ; Wan, Hongshen ; An, Xia ; Li, Suoping</creatorcontrib><description>Key message
The powdery mildew resistance gene
Pm58
was traced to a 141.3-kb interval with the co-segregating marker
Xkasp68500
in wheat breeding.
Pm58
is a powdery mildew resistance gene identified in
Aegilops tauschii
accession TA1662 and effective in a common wheat background. To finely map
Pm58
, an F
2
population of 676 plants derived from the cross T093 × TA1662 was used for recombinant screening. We obtained 13 recombinants that occurred between the flanking markers
Xhnu670
and
Xhnu186
. Genotyping and phenotyping these recombinant F
2:3
families delimited
Pm58
to a 0.22-cM interval (
Xsts20220
–
Xkasp61553
) on chromosome arm 2DS. The region carrying the
Pm58
locus was approximately 141.3-kb, which contained eight annotated genes according to the reference genome sequence of
Ae. tauschii
AL8/78. Haplotype analysis of 178
Ae. tauschii
accessions using the candidate gene-specific markers identified a disease resistance gene
AET2Gv20068500
as a candidate for
Pm58.
Comparative mapping of the
Pm58-
containing interval revealed two presence/absence variations (PAVs) between AL8/78 and common wheat Chinese Spring. PAV-1 resides in the 3′-end of
AET2Gv20068500.
The majority of 158 common wheat cultivars (84.8%) displayed the absence of a 14.1-kb fragment in the PAV-1 region, which was confirmed by aligning the targeted genome sequences of the other sequenced
Ae. tauschii
accessions and common wheat cultivars. A co-segregating marker
Xkasp68500
developed from
AET2Gv20068500
can distinguish TA1662 from all randomly selected common wheat cultivars and will be instrumental for tracking
Pm58
in breeding programs.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-022-04061-8</identifier><identifier>PMID: 35234985</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aegilops - genetics ; Aegilops tauschii ; Agricultural research ; Agriculture ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Chromosome Mapping ; Control ; Cultivars ; Disease resistance ; Disease Resistance - genetics ; Diseases and pests ; Gene mapping ; Genes, Plant ; Genetic aspects ; Genetic Markers ; Genomes ; Genotyping ; Goat grass ; Grasses ; Haplotypes ; Humans ; Life Sciences ; Methods ; Nucleotide sequence ; Original Article ; Phenotyping ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Diseases - genetics ; Plant Genetics and Genomics ; Plant immunology ; Powdery mildew ; Powdery mildew diseases ; Quantitative trait loci ; Recombinants ; Triticum - genetics ; Triticum aestivum ; Wheat</subject><ispartof>Theoretical and applied genetics, 2022-05, Vol.135 (5), p.1657-1669</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-8b5876a488ff5aea0a4d4a740bf65d04fbaff212092a85986f3f92bedfb755ec3</citedby><cites>FETCH-LOGICAL-c476t-8b5876a488ff5aea0a4d4a740bf65d04fbaff212092a85986f3f92bedfb755ec3</cites><orcidid>0000-0002-1531-9159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-022-04061-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-022-04061-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35234985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xue, Shulin</creatorcontrib><creatorcontrib>Hu, Shanshan</creatorcontrib><creatorcontrib>Chen, Xian</creatorcontrib><creatorcontrib>Ma, Yuyu</creatorcontrib><creatorcontrib>Lu, Mingxue</creatorcontrib><creatorcontrib>Bai, Shenglong</creatorcontrib><creatorcontrib>Wang, Xintian</creatorcontrib><creatorcontrib>Sun, Tiepeng</creatorcontrib><creatorcontrib>Wang, Yingxue</creatorcontrib><creatorcontrib>Wan, Hongshen</creatorcontrib><creatorcontrib>An, Xia</creatorcontrib><creatorcontrib>Li, Suoping</creatorcontrib><title>Fine mapping of Pm58 from Aegilops tauschii conferring powdery mildew resistance</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message
The powdery mildew resistance gene
Pm58
was traced to a 141.3-kb interval with the co-segregating marker
Xkasp68500
in wheat breeding.
Pm58
is a powdery mildew resistance gene identified in
Aegilops tauschii
accession TA1662 and effective in a common wheat background. To finely map
Pm58
, an F
2
population of 676 plants derived from the cross T093 × TA1662 was used for recombinant screening. We obtained 13 recombinants that occurred between the flanking markers
Xhnu670
and
Xhnu186
. Genotyping and phenotyping these recombinant F
2:3
families delimited
Pm58
to a 0.22-cM interval (
Xsts20220
–
Xkasp61553
) on chromosome arm 2DS. The region carrying the
Pm58
locus was approximately 141.3-kb, which contained eight annotated genes according to the reference genome sequence of
Ae. tauschii
AL8/78. Haplotype analysis of 178
Ae. tauschii
accessions using the candidate gene-specific markers identified a disease resistance gene
AET2Gv20068500
as a candidate for
Pm58.
Comparative mapping of the
Pm58-
containing interval revealed two presence/absence variations (PAVs) between AL8/78 and common wheat Chinese Spring. PAV-1 resides in the 3′-end of
AET2Gv20068500.
The majority of 158 common wheat cultivars (84.8%) displayed the absence of a 14.1-kb fragment in the PAV-1 region, which was confirmed by aligning the targeted genome sequences of the other sequenced
Ae. tauschii
accessions and common wheat cultivars. A co-segregating marker
Xkasp68500
developed from
AET2Gv20068500
can distinguish TA1662 from all randomly selected common wheat cultivars and will be instrumental for tracking
Pm58
in breeding programs.</description><subject>Aegilops - genetics</subject><subject>Aegilops tauschii</subject><subject>Agricultural research</subject><subject>Agriculture</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Chromosome Mapping</subject><subject>Control</subject><subject>Cultivars</subject><subject>Disease resistance</subject><subject>Disease Resistance - genetics</subject><subject>Diseases and pests</subject><subject>Gene mapping</subject><subject>Genes, Plant</subject><subject>Genetic aspects</subject><subject>Genetic Markers</subject><subject>Genomes</subject><subject>Genotyping</subject><subject>Goat grass</subject><subject>Grasses</subject><subject>Haplotypes</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Nucleotide sequence</subject><subject>Original Article</subject><subject>Phenotyping</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Diseases - genetics</subject><subject>Plant Genetics and Genomics</subject><subject>Plant immunology</subject><subject>Powdery mildew</subject><subject>Powdery mildew diseases</subject><subject>Quantitative trait loci</subject><subject>Recombinants</subject><subject>Triticum - genetics</subject><subject>Triticum aestivum</subject><subject>Wheat</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtr3TAQhUVJaW7T_oEsgiCbduF0rIctLy-haQOBhrRdC9ke3SjYliPZpPn3lbl5cEMIYhAM3xlmziHkMIeTHKD8FgFyxjJYSkCRZ-odWeWCs4wxwfbIClI7k6Vk--RjjDcAwCTwD2SfS8ZFpeSKXJ65AWlvxtENG-otveylojb4nq5x4zo_RjqZOTbXztHGDxZDWMjR37UY7mnvuhbvaMDo4mSGBj-R99Z0ET8__Afk79n3P6c_s4tfP85P1xdZI8piylQtVVkYoZS10qABI1phSgG1LWQLwtbGWpYzqJhRslKF5bZiNba2LqXEhh-QL9u5Y_C3M8ZJ9y422HVmQD9HzYp0ZPKCVwk9foHe-DkMabtEFaKSUiT6idqYDrUbrJ-CaZahel0mIyWXQibq5BUqvRZ7l_xB61J_R_B1R5CYCf9Nm-Rp1Oe_r3ZZtmWb4GMMaPUYXG_Cvc5BL5HrbeQalloi1yqJjh6um-se2yfJY8YJ4Fsgjkt0GJ7Pf2Psf_YLs3w</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Xue, Shulin</creator><creator>Hu, Shanshan</creator><creator>Chen, Xian</creator><creator>Ma, Yuyu</creator><creator>Lu, Mingxue</creator><creator>Bai, Shenglong</creator><creator>Wang, Xintian</creator><creator>Sun, Tiepeng</creator><creator>Wang, Yingxue</creator><creator>Wan, Hongshen</creator><creator>An, Xia</creator><creator>Li, Suoping</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1531-9159</orcidid></search><sort><creationdate>20220501</creationdate><title>Fine mapping of Pm58 from Aegilops tauschii conferring powdery mildew resistance</title><author>Xue, Shulin ; Hu, Shanshan ; Chen, Xian ; Ma, Yuyu ; Lu, Mingxue ; Bai, Shenglong ; Wang, Xintian ; Sun, Tiepeng ; Wang, Yingxue ; Wan, Hongshen ; An, Xia ; Li, Suoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-8b5876a488ff5aea0a4d4a740bf65d04fbaff212092a85986f3f92bedfb755ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aegilops - genetics</topic><topic>Aegilops tauschii</topic><topic>Agricultural research</topic><topic>Agriculture</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Chromosome Mapping</topic><topic>Control</topic><topic>Cultivars</topic><topic>Disease resistance</topic><topic>Disease Resistance - genetics</topic><topic>Diseases and pests</topic><topic>Gene mapping</topic><topic>Genes, Plant</topic><topic>Genetic aspects</topic><topic>Genetic Markers</topic><topic>Genomes</topic><topic>Genotyping</topic><topic>Goat grass</topic><topic>Grasses</topic><topic>Haplotypes</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Nucleotide sequence</topic><topic>Original Article</topic><topic>Phenotyping</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Diseases - genetics</topic><topic>Plant Genetics and Genomics</topic><topic>Plant immunology</topic><topic>Powdery mildew</topic><topic>Powdery mildew diseases</topic><topic>Quantitative trait loci</topic><topic>Recombinants</topic><topic>Triticum - genetics</topic><topic>Triticum aestivum</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Shulin</creatorcontrib><creatorcontrib>Hu, Shanshan</creatorcontrib><creatorcontrib>Chen, Xian</creatorcontrib><creatorcontrib>Ma, Yuyu</creatorcontrib><creatorcontrib>Lu, Mingxue</creatorcontrib><creatorcontrib>Bai, Shenglong</creatorcontrib><creatorcontrib>Wang, Xintian</creatorcontrib><creatorcontrib>Sun, Tiepeng</creatorcontrib><creatorcontrib>Wang, Yingxue</creatorcontrib><creatorcontrib>Wan, Hongshen</creatorcontrib><creatorcontrib>An, Xia</creatorcontrib><creatorcontrib>Li, Suoping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Shulin</au><au>Hu, Shanshan</au><au>Chen, Xian</au><au>Ma, Yuyu</au><au>Lu, Mingxue</au><au>Bai, Shenglong</au><au>Wang, Xintian</au><au>Sun, Tiepeng</au><au>Wang, Yingxue</au><au>Wan, Hongshen</au><au>An, Xia</au><au>Li, Suoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine mapping of Pm58 from Aegilops tauschii conferring powdery mildew resistance</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>135</volume><issue>5</issue><spage>1657</spage><epage>1669</epage><pages>1657-1669</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message
The powdery mildew resistance gene
Pm58
was traced to a 141.3-kb interval with the co-segregating marker
Xkasp68500
in wheat breeding.
Pm58
is a powdery mildew resistance gene identified in
Aegilops tauschii
accession TA1662 and effective in a common wheat background. To finely map
Pm58
, an F
2
population of 676 plants derived from the cross T093 × TA1662 was used for recombinant screening. We obtained 13 recombinants that occurred between the flanking markers
Xhnu670
and
Xhnu186
. Genotyping and phenotyping these recombinant F
2:3
families delimited
Pm58
to a 0.22-cM interval (
Xsts20220
–
Xkasp61553
) on chromosome arm 2DS. The region carrying the
Pm58
locus was approximately 141.3-kb, which contained eight annotated genes according to the reference genome sequence of
Ae. tauschii
AL8/78. Haplotype analysis of 178
Ae. tauschii
accessions using the candidate gene-specific markers identified a disease resistance gene
AET2Gv20068500
as a candidate for
Pm58.
Comparative mapping of the
Pm58-
containing interval revealed two presence/absence variations (PAVs) between AL8/78 and common wheat Chinese Spring. PAV-1 resides in the 3′-end of
AET2Gv20068500.
The majority of 158 common wheat cultivars (84.8%) displayed the absence of a 14.1-kb fragment in the PAV-1 region, which was confirmed by aligning the targeted genome sequences of the other sequenced
Ae. tauschii
accessions and common wheat cultivars. A co-segregating marker
Xkasp68500
developed from
AET2Gv20068500
can distinguish TA1662 from all randomly selected common wheat cultivars and will be instrumental for tracking
Pm58
in breeding programs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35234985</pmid><doi>10.1007/s00122-022-04061-8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1531-9159</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2022-05, Vol.135 (5), p.1657-1669 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_proquest_miscellaneous_2635243239 |
source | MEDLINE; SpringerLink Journals |
subjects | Aegilops - genetics Aegilops tauschii Agricultural research Agriculture Biochemistry Biomedical and Life Sciences Biotechnology Chromosome Mapping Control Cultivars Disease resistance Disease Resistance - genetics Diseases and pests Gene mapping Genes, Plant Genetic aspects Genetic Markers Genomes Genotyping Goat grass Grasses Haplotypes Humans Life Sciences Methods Nucleotide sequence Original Article Phenotyping Plant Biochemistry Plant Breeding Plant Breeding/Biotechnology Plant Diseases - genetics Plant Genetics and Genomics Plant immunology Powdery mildew Powdery mildew diseases Quantitative trait loci Recombinants Triticum - genetics Triticum aestivum Wheat |
title | Fine mapping of Pm58 from Aegilops tauschii conferring powdery mildew resistance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A59%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine%20mapping%20of%20Pm58%20from%20Aegilops%20tauschii%20conferring%20powdery%20mildew%20resistance&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Xue,%20Shulin&rft.date=2022-05-01&rft.volume=135&rft.issue=5&rft.spage=1657&rft.epage=1669&rft.pages=1657-1669&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-022-04061-8&rft_dat=%3Cgale_proqu%3EA704053545%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664955426&rft_id=info:pmid/35234985&rft_galeid=A704053545&rfr_iscdi=true |