EISI: Extended inter-spike interval for mental health patients clustering based on mental health services and medications utilisation
Mental health is vital in all human life stages, and managing mental healthcare service resources is crucial for providers. This paper presents a new method, called Extended Inter-Spike Interval (EISI), on identifying the patients with a similar utilisation of mental health services and medications....
Gespeichert in:
Veröffentlicht in: | Medical engineering & physics 2022-12, Vol.110, p.103780-103780, Article 103780 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 103780 |
---|---|
container_issue | |
container_start_page | 103780 |
container_title | Medical engineering & physics |
container_volume | 110 |
creator | Hajati, Farshid Girosi, Federico Rafiei, Alireza |
description | Mental health is vital in all human life stages, and managing mental healthcare service resources is crucial for providers. This paper presents a new method, called Extended Inter-Spike Interval (EISI), on identifying the patients with a similar utilisation of mental health services and medications. The EISI measures the distance between the utilisation patterns of the patients. Then, the pairwise distances are given to a developed split-and-merge Partitioning Around Medoids (PAM) clustering algorithm to identify the patients with similar utilisation patterns. To evaluate the proposed method, we use two years (2013–2014) of the 10% publicly available sample of the Australian Medicare Benefits Schedule (MBS) and Pharmaceutical Benefits Scheme (PBS) administrative data. Results show that mental health patients can be grouped into ten clusters with distinct and interpretable utilisations patterns. The largest cluster comprises individuals who only visit general practitioners and take psycholeptics medications for a short time. The smallest group contains occasional visits with general practitioners and regularly utilises psycholeptics and psychoanaleptics medications over long periods. The proposed method provides insights on whom to target and how to structure services for different groups of individuals with mental health conditions. |
doi_str_mv | 10.1016/j.medengphy.2022.103780 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2635239322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1350453322000297</els_id><sourcerecordid>2635239322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-7e2c65809c8f14d297672c7c743c163c424dd2ba76ad7a6b3cad59742b16378d3</originalsourceid><addsrcrecordid>eNqFkc9u3CAQxlHVqvn7Ci3HXrzBgMGbWxRtm5Ui9dD2jDDMZtl6sQs4ah6g753ZOMkhl54YZn4zo_k-Qj7XbFGzWl3sFnvwEO_G7cOCM84xK3TL3pHjutWikkyw9xiLhlWyEeKInOS8Y4xJqcRHciQaLrjS7TH5t1r_WF_S1d8C0YOnIRZIVR7Db5jje9vTzZDoHmLBcAu2L1s62hIwkanrp4xUiHe0sxkHDPENmnFGcJCpjR5LPjjsHWKmUwl9yE-fM_JhY_sM58_vKfn1dfXz-qa6_f5tfX11WzlR61Jp4E41LVu6dlNLz5daae6001K4WgknufSed1Yr67VVnXDWN0steYdV3XpxSr7Mc8c0_JkgF7MP2UHf2wjDlA1XB2WWgnNE9Yy6NOScYGPGFPY2PZiamYMHZmdePTAHD8zsAXZ-el4ydUi89r2IjsDVDACeeh8gmexQTYfaJHDF-CH8d8kjRgWehg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635239322</pqid></control><display><type>article</type><title>EISI: Extended inter-spike interval for mental health patients clustering based on mental health services and medications utilisation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hajati, Farshid ; Girosi, Federico ; Rafiei, Alireza</creator><creatorcontrib>Hajati, Farshid ; Girosi, Federico ; Rafiei, Alireza</creatorcontrib><description>Mental health is vital in all human life stages, and managing mental healthcare service resources is crucial for providers. This paper presents a new method, called Extended Inter-Spike Interval (EISI), on identifying the patients with a similar utilisation of mental health services and medications. The EISI measures the distance between the utilisation patterns of the patients. Then, the pairwise distances are given to a developed split-and-merge Partitioning Around Medoids (PAM) clustering algorithm to identify the patients with similar utilisation patterns. To evaluate the proposed method, we use two years (2013–2014) of the 10% publicly available sample of the Australian Medicare Benefits Schedule (MBS) and Pharmaceutical Benefits Scheme (PBS) administrative data. Results show that mental health patients can be grouped into ten clusters with distinct and interpretable utilisations patterns. The largest cluster comprises individuals who only visit general practitioners and take psycholeptics medications for a short time. The smallest group contains occasional visits with general practitioners and regularly utilises psycholeptics and psychoanaleptics medications over long periods. The proposed method provides insights on whom to target and how to structure services for different groups of individuals with mental health conditions.</description><identifier>ISSN: 1350-4533</identifier><identifier>EISSN: 1873-4030</identifier><identifier>DOI: 10.1016/j.medengphy.2022.103780</identifier><identifier>PMID: 35232678</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Aged ; Australia ; Cluster Analysis ; Humans ; Mental Health ; Mental Health Services ; National Health Programs ; Pharmaceutical Preparations</subject><ispartof>Medical engineering & physics, 2022-12, Vol.110, p.103780-103780, Article 103780</ispartof><rights>2022 IPEM</rights><rights>Copyright © 2022 IPEM. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-7e2c65809c8f14d297672c7c743c163c424dd2ba76ad7a6b3cad59742b16378d3</cites><orcidid>0000-0002-8573-5297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.medengphy.2022.103780$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35232678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hajati, Farshid</creatorcontrib><creatorcontrib>Girosi, Federico</creatorcontrib><creatorcontrib>Rafiei, Alireza</creatorcontrib><title>EISI: Extended inter-spike interval for mental health patients clustering based on mental health services and medications utilisation</title><title>Medical engineering & physics</title><addtitle>Med Eng Phys</addtitle><description>Mental health is vital in all human life stages, and managing mental healthcare service resources is crucial for providers. This paper presents a new method, called Extended Inter-Spike Interval (EISI), on identifying the patients with a similar utilisation of mental health services and medications. The EISI measures the distance between the utilisation patterns of the patients. Then, the pairwise distances are given to a developed split-and-merge Partitioning Around Medoids (PAM) clustering algorithm to identify the patients with similar utilisation patterns. To evaluate the proposed method, we use two years (2013–2014) of the 10% publicly available sample of the Australian Medicare Benefits Schedule (MBS) and Pharmaceutical Benefits Scheme (PBS) administrative data. Results show that mental health patients can be grouped into ten clusters with distinct and interpretable utilisations patterns. The largest cluster comprises individuals who only visit general practitioners and take psycholeptics medications for a short time. The smallest group contains occasional visits with general practitioners and regularly utilises psycholeptics and psychoanaleptics medications over long periods. The proposed method provides insights on whom to target and how to structure services for different groups of individuals with mental health conditions.</description><subject>Aged</subject><subject>Australia</subject><subject>Cluster Analysis</subject><subject>Humans</subject><subject>Mental Health</subject><subject>Mental Health Services</subject><subject>National Health Programs</subject><subject>Pharmaceutical Preparations</subject><issn>1350-4533</issn><issn>1873-4030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u3CAQxlHVqvn7Ci3HXrzBgMGbWxRtm5Ui9dD2jDDMZtl6sQs4ah6g753ZOMkhl54YZn4zo_k-Qj7XbFGzWl3sFnvwEO_G7cOCM84xK3TL3pHjutWikkyw9xiLhlWyEeKInOS8Y4xJqcRHciQaLrjS7TH5t1r_WF_S1d8C0YOnIRZIVR7Db5jje9vTzZDoHmLBcAu2L1s62hIwkanrp4xUiHe0sxkHDPENmnFGcJCpjR5LPjjsHWKmUwl9yE-fM_JhY_sM58_vKfn1dfXz-qa6_f5tfX11WzlR61Jp4E41LVu6dlNLz5daae6001K4WgknufSed1Yr67VVnXDWN0steYdV3XpxSr7Mc8c0_JkgF7MP2UHf2wjDlA1XB2WWgnNE9Yy6NOScYGPGFPY2PZiamYMHZmdePTAHD8zsAXZ-el4ydUi89r2IjsDVDACeeh8gmexQTYfaJHDF-CH8d8kjRgWehg</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Hajati, Farshid</creator><creator>Girosi, Federico</creator><creator>Rafiei, Alireza</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8573-5297</orcidid></search><sort><creationdate>20221201</creationdate><title>EISI: Extended inter-spike interval for mental health patients clustering based on mental health services and medications utilisation</title><author>Hajati, Farshid ; Girosi, Federico ; Rafiei, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-7e2c65809c8f14d297672c7c743c163c424dd2ba76ad7a6b3cad59742b16378d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aged</topic><topic>Australia</topic><topic>Cluster Analysis</topic><topic>Humans</topic><topic>Mental Health</topic><topic>Mental Health Services</topic><topic>National Health Programs</topic><topic>Pharmaceutical Preparations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hajati, Farshid</creatorcontrib><creatorcontrib>Girosi, Federico</creatorcontrib><creatorcontrib>Rafiei, Alireza</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical engineering & physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hajati, Farshid</au><au>Girosi, Federico</au><au>Rafiei, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EISI: Extended inter-spike interval for mental health patients clustering based on mental health services and medications utilisation</atitle><jtitle>Medical engineering & physics</jtitle><addtitle>Med Eng Phys</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>110</volume><spage>103780</spage><epage>103780</epage><pages>103780-103780</pages><artnum>103780</artnum><issn>1350-4533</issn><eissn>1873-4030</eissn><abstract>Mental health is vital in all human life stages, and managing mental healthcare service resources is crucial for providers. This paper presents a new method, called Extended Inter-Spike Interval (EISI), on identifying the patients with a similar utilisation of mental health services and medications. The EISI measures the distance between the utilisation patterns of the patients. Then, the pairwise distances are given to a developed split-and-merge Partitioning Around Medoids (PAM) clustering algorithm to identify the patients with similar utilisation patterns. To evaluate the proposed method, we use two years (2013–2014) of the 10% publicly available sample of the Australian Medicare Benefits Schedule (MBS) and Pharmaceutical Benefits Scheme (PBS) administrative data. Results show that mental health patients can be grouped into ten clusters with distinct and interpretable utilisations patterns. The largest cluster comprises individuals who only visit general practitioners and take psycholeptics medications for a short time. The smallest group contains occasional visits with general practitioners and regularly utilises psycholeptics and psychoanaleptics medications over long periods. The proposed method provides insights on whom to target and how to structure services for different groups of individuals with mental health conditions.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35232678</pmid><doi>10.1016/j.medengphy.2022.103780</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8573-5297</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-4533 |
ispartof | Medical engineering & physics, 2022-12, Vol.110, p.103780-103780, Article 103780 |
issn | 1350-4533 1873-4030 |
language | eng |
recordid | cdi_proquest_miscellaneous_2635239322 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Aged Australia Cluster Analysis Humans Mental Health Mental Health Services National Health Programs Pharmaceutical Preparations |
title | EISI: Extended inter-spike interval for mental health patients clustering based on mental health services and medications utilisation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A15%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EISI:%20Extended%20inter-spike%20interval%20for%20mental%20health%20patients%20clustering%20based%20on%20mental%20health%20services%20and%20medications%20utilisation&rft.jtitle=Medical%20engineering%20&%20physics&rft.au=Hajati,%20Farshid&rft.date=2022-12-01&rft.volume=110&rft.spage=103780&rft.epage=103780&rft.pages=103780-103780&rft.artnum=103780&rft.issn=1350-4533&rft.eissn=1873-4030&rft_id=info:doi/10.1016/j.medengphy.2022.103780&rft_dat=%3Cproquest_cross%3E2635239322%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635239322&rft_id=info:pmid/35232678&rft_els_id=S1350453322000297&rfr_iscdi=true |