EISI: Extended inter-spike interval for mental health patients clustering based on mental health services and medications utilisation

Mental health is vital in all human life stages, and managing mental healthcare service resources is crucial for providers. This paper presents a new method, called Extended Inter-Spike Interval (EISI), on identifying the patients with a similar utilisation of mental health services and medications....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical engineering & physics 2022-12, Vol.110, p.103780-103780, Article 103780
Hauptverfasser: Hajati, Farshid, Girosi, Federico, Rafiei, Alireza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103780
container_issue
container_start_page 103780
container_title Medical engineering & physics
container_volume 110
creator Hajati, Farshid
Girosi, Federico
Rafiei, Alireza
description Mental health is vital in all human life stages, and managing mental healthcare service resources is crucial for providers. This paper presents a new method, called Extended Inter-Spike Interval (EISI), on identifying the patients with a similar utilisation of mental health services and medications. The EISI measures the distance between the utilisation patterns of the patients. Then, the pairwise distances are given to a developed split-and-merge Partitioning Around Medoids (PAM) clustering algorithm to identify the patients with similar utilisation patterns. To evaluate the proposed method, we use two years (2013–2014) of the 10% publicly available sample of the Australian Medicare Benefits Schedule (MBS) and Pharmaceutical Benefits Scheme (PBS) administrative data. Results show that mental health patients can be grouped into ten clusters with distinct and interpretable utilisations patterns. The largest cluster comprises individuals who only visit general practitioners and take psycholeptics medications for a short time. The smallest group contains occasional visits with general practitioners and regularly utilises psycholeptics and psychoanaleptics medications over long periods. The proposed method provides insights on whom to target and how to structure services for different groups of individuals with mental health conditions.
doi_str_mv 10.1016/j.medengphy.2022.103780
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2635239322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1350453322000297</els_id><sourcerecordid>2635239322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-7e2c65809c8f14d297672c7c743c163c424dd2ba76ad7a6b3cad59742b16378d3</originalsourceid><addsrcrecordid>eNqFkc9u3CAQxlHVqvn7Ci3HXrzBgMGbWxRtm5Ui9dD2jDDMZtl6sQs4ah6g753ZOMkhl54YZn4zo_k-Qj7XbFGzWl3sFnvwEO_G7cOCM84xK3TL3pHjutWikkyw9xiLhlWyEeKInOS8Y4xJqcRHciQaLrjS7TH5t1r_WF_S1d8C0YOnIRZIVR7Db5jje9vTzZDoHmLBcAu2L1s62hIwkanrp4xUiHe0sxkHDPENmnFGcJCpjR5LPjjsHWKmUwl9yE-fM_JhY_sM58_vKfn1dfXz-qa6_f5tfX11WzlR61Jp4E41LVu6dlNLz5daae6001K4WgknufSed1Yr67VVnXDWN0steYdV3XpxSr7Mc8c0_JkgF7MP2UHf2wjDlA1XB2WWgnNE9Yy6NOScYGPGFPY2PZiamYMHZmdePTAHD8zsAXZ-el4ydUi89r2IjsDVDACeeh8gmexQTYfaJHDF-CH8d8kjRgWehg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635239322</pqid></control><display><type>article</type><title>EISI: Extended inter-spike interval for mental health patients clustering based on mental health services and medications utilisation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hajati, Farshid ; Girosi, Federico ; Rafiei, Alireza</creator><creatorcontrib>Hajati, Farshid ; Girosi, Federico ; Rafiei, Alireza</creatorcontrib><description>Mental health is vital in all human life stages, and managing mental healthcare service resources is crucial for providers. This paper presents a new method, called Extended Inter-Spike Interval (EISI), on identifying the patients with a similar utilisation of mental health services and medications. The EISI measures the distance between the utilisation patterns of the patients. Then, the pairwise distances are given to a developed split-and-merge Partitioning Around Medoids (PAM) clustering algorithm to identify the patients with similar utilisation patterns. To evaluate the proposed method, we use two years (2013–2014) of the 10% publicly available sample of the Australian Medicare Benefits Schedule (MBS) and Pharmaceutical Benefits Scheme (PBS) administrative data. Results show that mental health patients can be grouped into ten clusters with distinct and interpretable utilisations patterns. The largest cluster comprises individuals who only visit general practitioners and take psycholeptics medications for a short time. The smallest group contains occasional visits with general practitioners and regularly utilises psycholeptics and psychoanaleptics medications over long periods. The proposed method provides insights on whom to target and how to structure services for different groups of individuals with mental health conditions.</description><identifier>ISSN: 1350-4533</identifier><identifier>EISSN: 1873-4030</identifier><identifier>DOI: 10.1016/j.medengphy.2022.103780</identifier><identifier>PMID: 35232678</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Aged ; Australia ; Cluster Analysis ; Humans ; Mental Health ; Mental Health Services ; National Health Programs ; Pharmaceutical Preparations</subject><ispartof>Medical engineering &amp; physics, 2022-12, Vol.110, p.103780-103780, Article 103780</ispartof><rights>2022 IPEM</rights><rights>Copyright © 2022 IPEM. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-7e2c65809c8f14d297672c7c743c163c424dd2ba76ad7a6b3cad59742b16378d3</cites><orcidid>0000-0002-8573-5297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.medengphy.2022.103780$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35232678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hajati, Farshid</creatorcontrib><creatorcontrib>Girosi, Federico</creatorcontrib><creatorcontrib>Rafiei, Alireza</creatorcontrib><title>EISI: Extended inter-spike interval for mental health patients clustering based on mental health services and medications utilisation</title><title>Medical engineering &amp; physics</title><addtitle>Med Eng Phys</addtitle><description>Mental health is vital in all human life stages, and managing mental healthcare service resources is crucial for providers. This paper presents a new method, called Extended Inter-Spike Interval (EISI), on identifying the patients with a similar utilisation of mental health services and medications. The EISI measures the distance between the utilisation patterns of the patients. Then, the pairwise distances are given to a developed split-and-merge Partitioning Around Medoids (PAM) clustering algorithm to identify the patients with similar utilisation patterns. To evaluate the proposed method, we use two years (2013–2014) of the 10% publicly available sample of the Australian Medicare Benefits Schedule (MBS) and Pharmaceutical Benefits Scheme (PBS) administrative data. Results show that mental health patients can be grouped into ten clusters with distinct and interpretable utilisations patterns. The largest cluster comprises individuals who only visit general practitioners and take psycholeptics medications for a short time. The smallest group contains occasional visits with general practitioners and regularly utilises psycholeptics and psychoanaleptics medications over long periods. The proposed method provides insights on whom to target and how to structure services for different groups of individuals with mental health conditions.</description><subject>Aged</subject><subject>Australia</subject><subject>Cluster Analysis</subject><subject>Humans</subject><subject>Mental Health</subject><subject>Mental Health Services</subject><subject>National Health Programs</subject><subject>Pharmaceutical Preparations</subject><issn>1350-4533</issn><issn>1873-4030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u3CAQxlHVqvn7Ci3HXrzBgMGbWxRtm5Ui9dD2jDDMZtl6sQs4ah6g753ZOMkhl54YZn4zo_k-Qj7XbFGzWl3sFnvwEO_G7cOCM84xK3TL3pHjutWikkyw9xiLhlWyEeKInOS8Y4xJqcRHciQaLrjS7TH5t1r_WF_S1d8C0YOnIRZIVR7Db5jje9vTzZDoHmLBcAu2L1s62hIwkanrp4xUiHe0sxkHDPENmnFGcJCpjR5LPjjsHWKmUwl9yE-fM_JhY_sM58_vKfn1dfXz-qa6_f5tfX11WzlR61Jp4E41LVu6dlNLz5daae6001K4WgknufSed1Yr67VVnXDWN0steYdV3XpxSr7Mc8c0_JkgF7MP2UHf2wjDlA1XB2WWgnNE9Yy6NOScYGPGFPY2PZiamYMHZmdePTAHD8zsAXZ-el4ydUi89r2IjsDVDACeeh8gmexQTYfaJHDF-CH8d8kjRgWehg</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Hajati, Farshid</creator><creator>Girosi, Federico</creator><creator>Rafiei, Alireza</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8573-5297</orcidid></search><sort><creationdate>20221201</creationdate><title>EISI: Extended inter-spike interval for mental health patients clustering based on mental health services and medications utilisation</title><author>Hajati, Farshid ; Girosi, Federico ; Rafiei, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-7e2c65809c8f14d297672c7c743c163c424dd2ba76ad7a6b3cad59742b16378d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aged</topic><topic>Australia</topic><topic>Cluster Analysis</topic><topic>Humans</topic><topic>Mental Health</topic><topic>Mental Health Services</topic><topic>National Health Programs</topic><topic>Pharmaceutical Preparations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hajati, Farshid</creatorcontrib><creatorcontrib>Girosi, Federico</creatorcontrib><creatorcontrib>Rafiei, Alireza</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical engineering &amp; physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hajati, Farshid</au><au>Girosi, Federico</au><au>Rafiei, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EISI: Extended inter-spike interval for mental health patients clustering based on mental health services and medications utilisation</atitle><jtitle>Medical engineering &amp; physics</jtitle><addtitle>Med Eng Phys</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>110</volume><spage>103780</spage><epage>103780</epage><pages>103780-103780</pages><artnum>103780</artnum><issn>1350-4533</issn><eissn>1873-4030</eissn><abstract>Mental health is vital in all human life stages, and managing mental healthcare service resources is crucial for providers. This paper presents a new method, called Extended Inter-Spike Interval (EISI), on identifying the patients with a similar utilisation of mental health services and medications. The EISI measures the distance between the utilisation patterns of the patients. Then, the pairwise distances are given to a developed split-and-merge Partitioning Around Medoids (PAM) clustering algorithm to identify the patients with similar utilisation patterns. To evaluate the proposed method, we use two years (2013–2014) of the 10% publicly available sample of the Australian Medicare Benefits Schedule (MBS) and Pharmaceutical Benefits Scheme (PBS) administrative data. Results show that mental health patients can be grouped into ten clusters with distinct and interpretable utilisations patterns. The largest cluster comprises individuals who only visit general practitioners and take psycholeptics medications for a short time. The smallest group contains occasional visits with general practitioners and regularly utilises psycholeptics and psychoanaleptics medications over long periods. The proposed method provides insights on whom to target and how to structure services for different groups of individuals with mental health conditions.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35232678</pmid><doi>10.1016/j.medengphy.2022.103780</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8573-5297</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1350-4533
ispartof Medical engineering & physics, 2022-12, Vol.110, p.103780-103780, Article 103780
issn 1350-4533
1873-4030
language eng
recordid cdi_proquest_miscellaneous_2635239322
source MEDLINE; Elsevier ScienceDirect Journals
subjects Aged
Australia
Cluster Analysis
Humans
Mental Health
Mental Health Services
National Health Programs
Pharmaceutical Preparations
title EISI: Extended inter-spike interval for mental health patients clustering based on mental health services and medications utilisation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A15%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EISI:%20Extended%20inter-spike%20interval%20for%20mental%20health%20patients%20clustering%20based%20on%20mental%20health%20services%20and%20medications%20utilisation&rft.jtitle=Medical%20engineering%20&%20physics&rft.au=Hajati,%20Farshid&rft.date=2022-12-01&rft.volume=110&rft.spage=103780&rft.epage=103780&rft.pages=103780-103780&rft.artnum=103780&rft.issn=1350-4533&rft.eissn=1873-4030&rft_id=info:doi/10.1016/j.medengphy.2022.103780&rft_dat=%3Cproquest_cross%3E2635239322%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635239322&rft_id=info:pmid/35232678&rft_els_id=S1350453322000297&rfr_iscdi=true