The influence of a Hamiltonian vibration vs a bath vibration on the 2D electronic spectra of a homodimer
We elucidate the influence of the system–bath boundary placement within an open quantum system, with emphasis on the two-dimensional electronic spectra, through the application of the hierarchical equations of motion formalism for an exciton system. We apply two different models, the Hamiltonian vib...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2022-02, Vol.156 (8), p.084103-084103 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 084103 |
---|---|
container_issue | 8 |
container_start_page | 084103 |
container_title | The Journal of chemical physics |
container_volume | 156 |
creator | Humphries, Ben S. Green, Dale Jones, Garth A. |
description | We elucidate the influence of the system–bath boundary placement within an open quantum system, with emphasis on the two-dimensional electronic spectra, through the application of the hierarchical equations of motion formalism for an exciton system. We apply two different models, the Hamiltonian vibration model (HVM) and bath vibration model (BVM), to a monomer and a homodimer. In the HVM, we specifically include the vibronic states in the Hamiltonian capturing vibronic quenching, whereas in the BVM, all vibrational details are contained within the bath and described by an underdamped spectral density. The resultant spectra are analyzed in terms of energetic peak position and thermodynamic broadening precision in order to evaluate the efficacy of the two models. The HVM produces 2D spectra with accurate peak positional information, while the BVM is well suited to modeling dynamic peak broadening. For the monomer, both models produce equivalent spectra in the limit where additional damping associated with the underdamped vibration in the BVM approaches zero. This is supported by analytical results. However, for the homodimer, the BVM spectra are redshifted with respect to the HVM due to an absence of vibronic quenching in the BVM. The computational efficiency of the two models is also discussed in order to inform us of the most appropriate use of each method. |
doi_str_mv | 10.1063/5.0077404 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2635238880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2633071515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-7612aa02b93665b22ba447eb2ac79c832fca42db638c68b6ce32b05dc608bdc43</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMobk4f_AJS8EWFzZukTdNHmX8mDHyZzyVJU5bRNjNpB357MzunKAiBXG5-99yTg9A5hgkGRm-TCUCaxhAfoCEGno1TlsEhGgIQPM4YsAE68X4FADgl8TEa0IRQQiAbouViqSPTlFWnG6UjW0YimonaVK1tjGiijZFOtMaGyocnKdrlj144bZgn95GutGpdmFGRX29L0WstbW0LU2t3io5KUXl9trtH6PXxYTGdjecvT8_Tu_lYxZi3wTkmQgCRGWUskYRIEceplkSoNFOcklKJmBSSUa4Yl0xpSiQkhWLAZaFiOkJXve7a2bdO-zavjVe6qkSjbedzwraf55xDQC9_oSvbuSa421IUUpzgJFDXPaWc9d7pMl87Uwv3nmPIt_HnSb6LP7AXO8VO1rrYk195B-CmB7wy7WeGe2Zj3bdSvi7K_-C_qz8AsuqaQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633071515</pqid></control><display><type>article</type><title>The influence of a Hamiltonian vibration vs a bath vibration on the 2D electronic spectra of a homodimer</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Humphries, Ben S. ; Green, Dale ; Jones, Garth A.</creator><creatorcontrib>Humphries, Ben S. ; Green, Dale ; Jones, Garth A.</creatorcontrib><description>We elucidate the influence of the system–bath boundary placement within an open quantum system, with emphasis on the two-dimensional electronic spectra, through the application of the hierarchical equations of motion formalism for an exciton system. We apply two different models, the Hamiltonian vibration model (HVM) and bath vibration model (BVM), to a monomer and a homodimer. In the HVM, we specifically include the vibronic states in the Hamiltonian capturing vibronic quenching, whereas in the BVM, all vibrational details are contained within the bath and described by an underdamped spectral density. The resultant spectra are analyzed in terms of energetic peak position and thermodynamic broadening precision in order to evaluate the efficacy of the two models. The HVM produces 2D spectra with accurate peak positional information, while the BVM is well suited to modeling dynamic peak broadening. For the monomer, both models produce equivalent spectra in the limit where additional damping associated with the underdamped vibration in the BVM approaches zero. This is supported by analytical results. However, for the homodimer, the BVM spectra are redshifted with respect to the HVM due to an absence of vibronic quenching in the BVM. The computational efficiency of the two models is also discussed in order to inform us of the most appropriate use of each method.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0077404</identifier><identifier>PMID: 35232209</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Damping ; Electronic spectra ; Equations of motion ; Excitons ; Monomers ; Physics ; Quantum theory ; Quenching ; Two dimensional models ; Vibration</subject><ispartof>The Journal of chemical physics, 2022-02, Vol.156 (8), p.084103-084103</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-7612aa02b93665b22ba447eb2ac79c832fca42db638c68b6ce32b05dc608bdc43</citedby><cites>FETCH-LOGICAL-c418t-7612aa02b93665b22ba447eb2ac79c832fca42db638c68b6ce32b05dc608bdc43</cites><orcidid>0000-0003-2984-1711 ; 0000-0003-0767-6663 ; 0000-0002-2549-0486 ; s0000000329841711 ; s0000000225490486 ; s0000000307676663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0077404$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4510,27923,27924,76155</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35232209$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Humphries, Ben S.</creatorcontrib><creatorcontrib>Green, Dale</creatorcontrib><creatorcontrib>Jones, Garth A.</creatorcontrib><title>The influence of a Hamiltonian vibration vs a bath vibration on the 2D electronic spectra of a homodimer</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We elucidate the influence of the system–bath boundary placement within an open quantum system, with emphasis on the two-dimensional electronic spectra, through the application of the hierarchical equations of motion formalism for an exciton system. We apply two different models, the Hamiltonian vibration model (HVM) and bath vibration model (BVM), to a monomer and a homodimer. In the HVM, we specifically include the vibronic states in the Hamiltonian capturing vibronic quenching, whereas in the BVM, all vibrational details are contained within the bath and described by an underdamped spectral density. The resultant spectra are analyzed in terms of energetic peak position and thermodynamic broadening precision in order to evaluate the efficacy of the two models. The HVM produces 2D spectra with accurate peak positional information, while the BVM is well suited to modeling dynamic peak broadening. For the monomer, both models produce equivalent spectra in the limit where additional damping associated with the underdamped vibration in the BVM approaches zero. This is supported by analytical results. However, for the homodimer, the BVM spectra are redshifted with respect to the HVM due to an absence of vibronic quenching in the BVM. The computational efficiency of the two models is also discussed in order to inform us of the most appropriate use of each method.</description><subject>Damping</subject><subject>Electronic spectra</subject><subject>Equations of motion</subject><subject>Excitons</subject><subject>Monomers</subject><subject>Physics</subject><subject>Quantum theory</subject><subject>Quenching</subject><subject>Two dimensional models</subject><subject>Vibration</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMobk4f_AJS8EWFzZukTdNHmX8mDHyZzyVJU5bRNjNpB357MzunKAiBXG5-99yTg9A5hgkGRm-TCUCaxhAfoCEGno1TlsEhGgIQPM4YsAE68X4FADgl8TEa0IRQQiAbouViqSPTlFWnG6UjW0YimonaVK1tjGiijZFOtMaGyocnKdrlj144bZgn95GutGpdmFGRX29L0WstbW0LU2t3io5KUXl9trtH6PXxYTGdjecvT8_Tu_lYxZi3wTkmQgCRGWUskYRIEceplkSoNFOcklKJmBSSUa4Yl0xpSiQkhWLAZaFiOkJXve7a2bdO-zavjVe6qkSjbedzwraf55xDQC9_oSvbuSa421IUUpzgJFDXPaWc9d7pMl87Uwv3nmPIt_HnSb6LP7AXO8VO1rrYk195B-CmB7wy7WeGe2Zj3bdSvi7K_-C_qz8AsuqaQQ</recordid><startdate>20220228</startdate><enddate>20220228</enddate><creator>Humphries, Ben S.</creator><creator>Green, Dale</creator><creator>Jones, Garth A.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2984-1711</orcidid><orcidid>https://orcid.org/0000-0003-0767-6663</orcidid><orcidid>https://orcid.org/0000-0002-2549-0486</orcidid><orcidid>https://orcid.org/s0000000329841711</orcidid><orcidid>https://orcid.org/s0000000225490486</orcidid><orcidid>https://orcid.org/s0000000307676663</orcidid></search><sort><creationdate>20220228</creationdate><title>The influence of a Hamiltonian vibration vs a bath vibration on the 2D electronic spectra of a homodimer</title><author>Humphries, Ben S. ; Green, Dale ; Jones, Garth A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-7612aa02b93665b22ba447eb2ac79c832fca42db638c68b6ce32b05dc608bdc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Damping</topic><topic>Electronic spectra</topic><topic>Equations of motion</topic><topic>Excitons</topic><topic>Monomers</topic><topic>Physics</topic><topic>Quantum theory</topic><topic>Quenching</topic><topic>Two dimensional models</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Humphries, Ben S.</creatorcontrib><creatorcontrib>Green, Dale</creatorcontrib><creatorcontrib>Jones, Garth A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Humphries, Ben S.</au><au>Green, Dale</au><au>Jones, Garth A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of a Hamiltonian vibration vs a bath vibration on the 2D electronic spectra of a homodimer</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2022-02-28</date><risdate>2022</risdate><volume>156</volume><issue>8</issue><spage>084103</spage><epage>084103</epage><pages>084103-084103</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We elucidate the influence of the system–bath boundary placement within an open quantum system, with emphasis on the two-dimensional electronic spectra, through the application of the hierarchical equations of motion formalism for an exciton system. We apply two different models, the Hamiltonian vibration model (HVM) and bath vibration model (BVM), to a monomer and a homodimer. In the HVM, we specifically include the vibronic states in the Hamiltonian capturing vibronic quenching, whereas in the BVM, all vibrational details are contained within the bath and described by an underdamped spectral density. The resultant spectra are analyzed in terms of energetic peak position and thermodynamic broadening precision in order to evaluate the efficacy of the two models. The HVM produces 2D spectra with accurate peak positional information, while the BVM is well suited to modeling dynamic peak broadening. For the monomer, both models produce equivalent spectra in the limit where additional damping associated with the underdamped vibration in the BVM approaches zero. This is supported by analytical results. However, for the homodimer, the BVM spectra are redshifted with respect to the HVM due to an absence of vibronic quenching in the BVM. The computational efficiency of the two models is also discussed in order to inform us of the most appropriate use of each method.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>35232209</pmid><doi>10.1063/5.0077404</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2984-1711</orcidid><orcidid>https://orcid.org/0000-0003-0767-6663</orcidid><orcidid>https://orcid.org/0000-0002-2549-0486</orcidid><orcidid>https://orcid.org/s0000000329841711</orcidid><orcidid>https://orcid.org/s0000000225490486</orcidid><orcidid>https://orcid.org/s0000000307676663</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2022-02, Vol.156 (8), p.084103-084103 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_2635238880 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Damping Electronic spectra Equations of motion Excitons Monomers Physics Quantum theory Quenching Two dimensional models Vibration |
title | The influence of a Hamiltonian vibration vs a bath vibration on the 2D electronic spectra of a homodimer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A56%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20a%20Hamiltonian%20vibration%20vs%20a%20bath%20vibration%20on%20the%202D%20electronic%20spectra%20of%20a%20homodimer&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Humphries,%20Ben%20S.&rft.date=2022-02-28&rft.volume=156&rft.issue=8&rft.spage=084103&rft.epage=084103&rft.pages=084103-084103&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0077404&rft_dat=%3Cproquest_pubme%3E2633071515%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633071515&rft_id=info:pmid/35232209&rfr_iscdi=true |