Transcriptome analysis uncovers different avenues for manipulating cold performance in Chrysomya megacephala (Diptera, Calliphoridae)

Temperature strongly impacts the rates of physiological and biochemical processes, which in turn can determine the survival and population size of insects. At low temperatures performance is limited, however, cold tolerance and performance at low temperature can be improved after short- or long-term...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of entomological research 2022-06, Vol.112 (3), p.419-430
Hauptverfasser: Qi, Xuewei, Wang, Yaohui, Zhang, Guijian, Cao, Shuai, Xu, Penghui, Ren, Xueming, Mansour, Abdelaziz, Niu, Changying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 430
container_issue 3
container_start_page 419
container_title Bulletin of entomological research
container_volume 112
creator Qi, Xuewei
Wang, Yaohui
Zhang, Guijian
Cao, Shuai
Xu, Penghui
Ren, Xueming
Mansour, Abdelaziz
Niu, Changying
description Temperature strongly impacts the rates of physiological and biochemical processes, which in turn can determine the survival and population size of insects. At low temperatures performance is limited, however, cold tolerance and performance at low temperature can be improved after short- or long-term acclimation in many insect species. To understand mechanisms underlying acclimation, we sequenced and compared the transcriptome of the blowfly Chrysomya megacephala under rapid cold hardening (RCH) and long-term cold acclimation (LCA) conditions. The RCH response was dominated by genes related to immune response, spliceosome, and protein processing in endoplasmic reticulum with up-regulation during recovery from RCH. In contrast, LCA was associated with genes related to carbohydrate metabolism and cytoskeleton branching and stabilizing. Meanwhile, mRNA levels of genes related to glycerophospholipid metabolism, and some heat shock proteins (Hsps) were collectively up-regulated by both RCH and LCA. There were more genes and pathway adjustments associated with LCA than RCH. Overall, the transcriptome data provide basic information of molecular mechanisms underpinning the RCH and LCA response. The partly independent molecular responses to RCH and LCA suggest that several avenues for manipulating cold performance exist and RCH might be more effective as it only triggers fewer genes and affects the general metabolisms less. These observations provide some appropriate methods to improve cold tolerance of C. megacephala, and hold promise for developing an extended use of mass-reared C. megacephala with better cold performance as a pollinator of crops at low temperatures.
doi_str_mv 10.1017/S0007485321001073
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2634534535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0007485321001073</cupid><sourcerecordid>2661863268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-7dce4142af235b17f627d8e8ef86da78d659c3f9c3896ee0562be1acb4b4ec913</originalsourceid><addsrcrecordid>eNp1kd1q3DAQhUVpaTZpH6A3RdCbBOpU_7Ivw_YXArloem3G8nhXwbZcyQ7sA-S9K5NtCw0FCSGdb86gOYS84eySM24_fGeMWVVqKThjnFn5jGy4sroQxrLnZLPKxaqfkNOU7vJVVap6SU6kFkJzyzfk4TbCmFz00xwGpDBCf0g-0WV04R5joq3vOow4zhTucVww0S5EOsDop6WH2Y876kLf0gljFvK7Q-pHut3HQwrDAeiAO3A47aEHev4x98EI7-kW-t5P-xB9C3jxirzooE_4-niekR-fP91uvxbXN1--ba-uCyeFngvbOlRcCeiE1A23nRG2LbHErjQt2LI1unKyy7usDCLTRjTIwTWqUegqLs_I-aPvFMPP_Je5Hnxy2PcwYlhSLYxUel06o-_-Qe_CEvN4Vsrw0khhykzxR8rFkFLErp6iHyAeas7qNaP6SUa55u3ReWkGbP9U_A4lA_JoCkOTB7TDv73_b_sLNl6dtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661863268</pqid></control><display><type>article</type><title>Transcriptome analysis uncovers different avenues for manipulating cold performance in Chrysomya megacephala (Diptera, Calliphoridae)</title><source>Cambridge University Press Journals Complete</source><creator>Qi, Xuewei ; Wang, Yaohui ; Zhang, Guijian ; Cao, Shuai ; Xu, Penghui ; Ren, Xueming ; Mansour, Abdelaziz ; Niu, Changying</creator><creatorcontrib>Qi, Xuewei ; Wang, Yaohui ; Zhang, Guijian ; Cao, Shuai ; Xu, Penghui ; Ren, Xueming ; Mansour, Abdelaziz ; Niu, Changying</creatorcontrib><description>Temperature strongly impacts the rates of physiological and biochemical processes, which in turn can determine the survival and population size of insects. At low temperatures performance is limited, however, cold tolerance and performance at low temperature can be improved after short- or long-term acclimation in many insect species. To understand mechanisms underlying acclimation, we sequenced and compared the transcriptome of the blowfly Chrysomya megacephala under rapid cold hardening (RCH) and long-term cold acclimation (LCA) conditions. The RCH response was dominated by genes related to immune response, spliceosome, and protein processing in endoplasmic reticulum with up-regulation during recovery from RCH. In contrast, LCA was associated with genes related to carbohydrate metabolism and cytoskeleton branching and stabilizing. Meanwhile, mRNA levels of genes related to glycerophospholipid metabolism, and some heat shock proteins (Hsps) were collectively up-regulated by both RCH and LCA. There were more genes and pathway adjustments associated with LCA than RCH. Overall, the transcriptome data provide basic information of molecular mechanisms underpinning the RCH and LCA response. The partly independent molecular responses to RCH and LCA suggest that several avenues for manipulating cold performance exist and RCH might be more effective as it only triggers fewer genes and affects the general metabolisms less. These observations provide some appropriate methods to improve cold tolerance of C. megacephala, and hold promise for developing an extended use of mass-reared C. megacephala with better cold performance as a pollinator of crops at low temperatures.</description><identifier>ISSN: 0007-4853</identifier><identifier>EISSN: 1475-2670</identifier><identifier>DOI: 10.1017/S0007485321001073</identifier><identifier>PMID: 35225171</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Acclimation ; Acclimatization ; Brittleness ; Carbohydrate metabolism ; Carbohydrates ; Chrysomya megacephala ; Cold ; Cold acclimation ; Cold tolerance ; Cold treatment ; Cytoskeleton ; Defence mechanisms ; Endoplasmic reticulum ; Genes ; Heat shock ; Heat shock proteins ; Immune response ; Immunity ; Immunological tolerance ; Insects ; Low temperature ; Metabolism ; Molecular modelling ; Population number ; Research Paper ; Stabilizing ; Survival ; Temperature tolerance ; Transcriptomes</subject><ispartof>Bulletin of entomological research, 2022-06, Vol.112 (3), p.419-430</ispartof><rights>Copyright © The Author(s), 2022. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-7dce4142af235b17f627d8e8ef86da78d659c3f9c3896ee0562be1acb4b4ec913</cites><orcidid>0000-0003-2793-1422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0007485321001073/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35225171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qi, Xuewei</creatorcontrib><creatorcontrib>Wang, Yaohui</creatorcontrib><creatorcontrib>Zhang, Guijian</creatorcontrib><creatorcontrib>Cao, Shuai</creatorcontrib><creatorcontrib>Xu, Penghui</creatorcontrib><creatorcontrib>Ren, Xueming</creatorcontrib><creatorcontrib>Mansour, Abdelaziz</creatorcontrib><creatorcontrib>Niu, Changying</creatorcontrib><title>Transcriptome analysis uncovers different avenues for manipulating cold performance in Chrysomya megacephala (Diptera, Calliphoridae)</title><title>Bulletin of entomological research</title><addtitle>Bull. Entomol. Res</addtitle><description>Temperature strongly impacts the rates of physiological and biochemical processes, which in turn can determine the survival and population size of insects. At low temperatures performance is limited, however, cold tolerance and performance at low temperature can be improved after short- or long-term acclimation in many insect species. To understand mechanisms underlying acclimation, we sequenced and compared the transcriptome of the blowfly Chrysomya megacephala under rapid cold hardening (RCH) and long-term cold acclimation (LCA) conditions. The RCH response was dominated by genes related to immune response, spliceosome, and protein processing in endoplasmic reticulum with up-regulation during recovery from RCH. In contrast, LCA was associated with genes related to carbohydrate metabolism and cytoskeleton branching and stabilizing. Meanwhile, mRNA levels of genes related to glycerophospholipid metabolism, and some heat shock proteins (Hsps) were collectively up-regulated by both RCH and LCA. There were more genes and pathway adjustments associated with LCA than RCH. Overall, the transcriptome data provide basic information of molecular mechanisms underpinning the RCH and LCA response. The partly independent molecular responses to RCH and LCA suggest that several avenues for manipulating cold performance exist and RCH might be more effective as it only triggers fewer genes and affects the general metabolisms less. These observations provide some appropriate methods to improve cold tolerance of C. megacephala, and hold promise for developing an extended use of mass-reared C. megacephala with better cold performance as a pollinator of crops at low temperatures.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Brittleness</subject><subject>Carbohydrate metabolism</subject><subject>Carbohydrates</subject><subject>Chrysomya megacephala</subject><subject>Cold</subject><subject>Cold acclimation</subject><subject>Cold tolerance</subject><subject>Cold treatment</subject><subject>Cytoskeleton</subject><subject>Defence mechanisms</subject><subject>Endoplasmic reticulum</subject><subject>Genes</subject><subject>Heat shock</subject><subject>Heat shock proteins</subject><subject>Immune response</subject><subject>Immunity</subject><subject>Immunological tolerance</subject><subject>Insects</subject><subject>Low temperature</subject><subject>Metabolism</subject><subject>Molecular modelling</subject><subject>Population number</subject><subject>Research Paper</subject><subject>Stabilizing</subject><subject>Survival</subject><subject>Temperature tolerance</subject><subject>Transcriptomes</subject><issn>0007-4853</issn><issn>1475-2670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kd1q3DAQhUVpaTZpH6A3RdCbBOpU_7Ivw_YXArloem3G8nhXwbZcyQ7sA-S9K5NtCw0FCSGdb86gOYS84eySM24_fGeMWVVqKThjnFn5jGy4sroQxrLnZLPKxaqfkNOU7vJVVap6SU6kFkJzyzfk4TbCmFz00xwGpDBCf0g-0WV04R5joq3vOow4zhTucVww0S5EOsDop6WH2Y876kLf0gljFvK7Q-pHut3HQwrDAeiAO3A47aEHev4x98EI7-kW-t5P-xB9C3jxirzooE_4-niekR-fP91uvxbXN1--ba-uCyeFngvbOlRcCeiE1A23nRG2LbHErjQt2LI1unKyy7usDCLTRjTIwTWqUegqLs_I-aPvFMPP_Je5Hnxy2PcwYlhSLYxUel06o-_-Qe_CEvN4Vsrw0khhykzxR8rFkFLErp6iHyAeas7qNaP6SUa55u3ReWkGbP9U_A4lA_JoCkOTB7TDv73_b_sLNl6dtg</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Qi, Xuewei</creator><creator>Wang, Yaohui</creator><creator>Zhang, Guijian</creator><creator>Cao, Shuai</creator><creator>Xu, Penghui</creator><creator>Ren, Xueming</creator><creator>Mansour, Abdelaziz</creator><creator>Niu, Changying</creator><general>Cambridge University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2793-1422</orcidid></search><sort><creationdate>20220601</creationdate><title>Transcriptome analysis uncovers different avenues for manipulating cold performance in Chrysomya megacephala (Diptera, Calliphoridae)</title><author>Qi, Xuewei ; Wang, Yaohui ; Zhang, Guijian ; Cao, Shuai ; Xu, Penghui ; Ren, Xueming ; Mansour, Abdelaziz ; Niu, Changying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-7dce4142af235b17f627d8e8ef86da78d659c3f9c3896ee0562be1acb4b4ec913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Brittleness</topic><topic>Carbohydrate metabolism</topic><topic>Carbohydrates</topic><topic>Chrysomya megacephala</topic><topic>Cold</topic><topic>Cold acclimation</topic><topic>Cold tolerance</topic><topic>Cold treatment</topic><topic>Cytoskeleton</topic><topic>Defence mechanisms</topic><topic>Endoplasmic reticulum</topic><topic>Genes</topic><topic>Heat shock</topic><topic>Heat shock proteins</topic><topic>Immune response</topic><topic>Immunity</topic><topic>Immunological tolerance</topic><topic>Insects</topic><topic>Low temperature</topic><topic>Metabolism</topic><topic>Molecular modelling</topic><topic>Population number</topic><topic>Research Paper</topic><topic>Stabilizing</topic><topic>Survival</topic><topic>Temperature tolerance</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Xuewei</creatorcontrib><creatorcontrib>Wang, Yaohui</creatorcontrib><creatorcontrib>Zhang, Guijian</creatorcontrib><creatorcontrib>Cao, Shuai</creatorcontrib><creatorcontrib>Xu, Penghui</creatorcontrib><creatorcontrib>Ren, Xueming</creatorcontrib><creatorcontrib>Mansour, Abdelaziz</creatorcontrib><creatorcontrib>Niu, Changying</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of entomological research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Xuewei</au><au>Wang, Yaohui</au><au>Zhang, Guijian</au><au>Cao, Shuai</au><au>Xu, Penghui</au><au>Ren, Xueming</au><au>Mansour, Abdelaziz</au><au>Niu, Changying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptome analysis uncovers different avenues for manipulating cold performance in Chrysomya megacephala (Diptera, Calliphoridae)</atitle><jtitle>Bulletin of entomological research</jtitle><addtitle>Bull. Entomol. Res</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>112</volume><issue>3</issue><spage>419</spage><epage>430</epage><pages>419-430</pages><issn>0007-4853</issn><eissn>1475-2670</eissn><abstract>Temperature strongly impacts the rates of physiological and biochemical processes, which in turn can determine the survival and population size of insects. At low temperatures performance is limited, however, cold tolerance and performance at low temperature can be improved after short- or long-term acclimation in many insect species. To understand mechanisms underlying acclimation, we sequenced and compared the transcriptome of the blowfly Chrysomya megacephala under rapid cold hardening (RCH) and long-term cold acclimation (LCA) conditions. The RCH response was dominated by genes related to immune response, spliceosome, and protein processing in endoplasmic reticulum with up-regulation during recovery from RCH. In contrast, LCA was associated with genes related to carbohydrate metabolism and cytoskeleton branching and stabilizing. Meanwhile, mRNA levels of genes related to glycerophospholipid metabolism, and some heat shock proteins (Hsps) were collectively up-regulated by both RCH and LCA. There were more genes and pathway adjustments associated with LCA than RCH. Overall, the transcriptome data provide basic information of molecular mechanisms underpinning the RCH and LCA response. The partly independent molecular responses to RCH and LCA suggest that several avenues for manipulating cold performance exist and RCH might be more effective as it only triggers fewer genes and affects the general metabolisms less. These observations provide some appropriate methods to improve cold tolerance of C. megacephala, and hold promise for developing an extended use of mass-reared C. megacephala with better cold performance as a pollinator of crops at low temperatures.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>35225171</pmid><doi>10.1017/S0007485321001073</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2793-1422</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0007-4853
ispartof Bulletin of entomological research, 2022-06, Vol.112 (3), p.419-430
issn 0007-4853
1475-2670
language eng
recordid cdi_proquest_miscellaneous_2634534535
source Cambridge University Press Journals Complete
subjects Acclimation
Acclimatization
Brittleness
Carbohydrate metabolism
Carbohydrates
Chrysomya megacephala
Cold
Cold acclimation
Cold tolerance
Cold treatment
Cytoskeleton
Defence mechanisms
Endoplasmic reticulum
Genes
Heat shock
Heat shock proteins
Immune response
Immunity
Immunological tolerance
Insects
Low temperature
Metabolism
Molecular modelling
Population number
Research Paper
Stabilizing
Survival
Temperature tolerance
Transcriptomes
title Transcriptome analysis uncovers different avenues for manipulating cold performance in Chrysomya megacephala (Diptera, Calliphoridae)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A37%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptome%20analysis%20uncovers%20different%20avenues%20for%20manipulating%20cold%20performance%20in%20Chrysomya%20megacephala%20(Diptera,%20Calliphoridae)&rft.jtitle=Bulletin%20of%20entomological%20research&rft.au=Qi,%20Xuewei&rft.date=2022-06-01&rft.volume=112&rft.issue=3&rft.spage=419&rft.epage=430&rft.pages=419-430&rft.issn=0007-4853&rft.eissn=1475-2670&rft_id=info:doi/10.1017/S0007485321001073&rft_dat=%3Cproquest_cross%3E2661863268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661863268&rft_id=info:pmid/35225171&rft_cupid=10_1017_S0007485321001073&rfr_iscdi=true