DeU-Net 2.0: Enhanced deformable U-Net for 3D cardiac cine MRI segmentation
•A novel architecture DeU-Net 2.0, including Temporal Deformable Aggregation Module (TDAM), Enhanced Deformable Attention Network (EDAN) and Probabilistic Noise Correction Module (PNCM), was proposed for 3D cardiac cine MRI segmentation (average Dice score > 95% on the Extended ACDC dataset).•TDA...
Gespeichert in:
Veröffentlicht in: | Medical image analysis 2022-05, Vol.78, p.102389-102389, Article 102389 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 102389 |
---|---|
container_issue | |
container_start_page | 102389 |
container_title | Medical image analysis |
container_volume | 78 |
creator | Dong, Shunjie Pan, Zixuan Fu, Yu Yang, Qianqian Gao, Yuanxue Yu, Tianbai Shi, Yiyu Zhuo, Cheng |
description | •A novel architecture DeU-Net 2.0, including Temporal Deformable Aggregation Module (TDAM), Enhanced Deformable Attention Network (EDAN) and Probabilistic Noise Correction Module (PNCM), was proposed for 3D cardiac cine MRI segmentation (average Dice score > 95% on the Extended ACDC dataset).•TDAM takes in consecutive MR slices as inputs to enhance the feature quality of the target slice by an offset prediction network and a temporal deformable convolutional layer.•EDAN exploits pyramidal architecture and high flexible deformable convolutional layers for accurate and robust segmentation.•In EDAN, we also propose Multi-Scale Attention Module (MSAM) to exploit multi-scale self-similarity and capture the useful correspondences at different scales.•PNCM considers two feature vectors as the normal feature and a random variable that is drawn from a standard Gaussian distribution by a full connection layer to alleviate the impact of noisy samples.
[Display omitted]
Automatic segmentation of cardiac magnetic resonance imaging (MRI) facilitates efficient and accurate volume measurement in clinical applications. However, due to anisotropic resolution, ambiguous borders and complicated shapes, existing methods suffer from the degradation of accuracy and robustness in cardiac MRI segmentation. In this paper, we propose an enhanced Deformable U-Net (DeU-Net) for 3D cardiac cine MRI segmentation, composed of three modules, namely Temporal Deformable Aggregation Module (TDAM), Enhanced Deformable Attention Network (EDAN), and Probabilistic Noise Correction Module (PNCM). TDAM first takes consecutive cardiac MR slices (including a target slice and its neighboring reference slices) as input, and extracts spatio-temporal information by an offset prediction network to generate fused features of the target slice. Then the fused features are also fed into EDAN that exploits several flexible deformable convolutional layers and generates clear borders of every segmentation map. A Multi-Scale Attention Module (MSAM) in EDAN is proposed to capture long range dependencies between features of different scales. Meanwhile, PNCM treats the fused features as a distribution to quantify uncertainty. Experimental results show that our DeU-Net achieves the state-of-the-art performance in terms of the commonly used evaluation metrics on the Extended ACDC dataset and competitive performance on other two datasets, validating the robustness and generalization of DeU-Net. |
doi_str_mv | 10.1016/j.media.2022.102389 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2634529059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S136184152200041X</els_id><sourcerecordid>2634529059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-62e2b8cd5da443fac98712c041a112b397d4fbe1d8799e211e1e748a3052b1803</originalsourceid><addsrcrecordid>eNp9kEtLxDAQgIMovn-BIAEvXrpmkrRNBA_iG18geg5pOtUs21aTruC_N2vVgwdPmcx88-AjZAfYBBgUB9NJi7W3E844TxkulF4i6yAKyJTkYvk3hnyNbMQ4ZYyVUrJVsiZyDlpLtk6uT_Epu8OB8gk7pGfdi-0c1rTGpg-trWZIx3L6UnFKnQ1ppaPOd0hvH65oxOcWu8EOvu-2yEpjZxG3v99N8nR-9nhymd3cX1ydHN9kTqhyyAqOvFKuzmsrpWis06oE7pgEC8AroctaNhVCrUqtkQMgYCmVFSznFSgmNsn-OPc19G9zjINpfXQ4m9kO-3k0vBAy55rlOqF7f9BpPw9dui5RulBKaygTJUbKhT7GgI15Db614cMAMwvXZmq-XJuFazO6Tl2737PnVar-9vzITcDRCGCS8e4xmOg8Lvz6gG4wde__XfAJ0GiMDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696889917</pqid></control><display><type>article</type><title>DeU-Net 2.0: Enhanced deformable U-Net for 3D cardiac cine MRI segmentation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Dong, Shunjie ; Pan, Zixuan ; Fu, Yu ; Yang, Qianqian ; Gao, Yuanxue ; Yu, Tianbai ; Shi, Yiyu ; Zhuo, Cheng</creator><creatorcontrib>Dong, Shunjie ; Pan, Zixuan ; Fu, Yu ; Yang, Qianqian ; Gao, Yuanxue ; Yu, Tianbai ; Shi, Yiyu ; Zhuo, Cheng</creatorcontrib><description>•A novel architecture DeU-Net 2.0, including Temporal Deformable Aggregation Module (TDAM), Enhanced Deformable Attention Network (EDAN) and Probabilistic Noise Correction Module (PNCM), was proposed for 3D cardiac cine MRI segmentation (average Dice score > 95% on the Extended ACDC dataset).•TDAM takes in consecutive MR slices as inputs to enhance the feature quality of the target slice by an offset prediction network and a temporal deformable convolutional layer.•EDAN exploits pyramidal architecture and high flexible deformable convolutional layers for accurate and robust segmentation.•In EDAN, we also propose Multi-Scale Attention Module (MSAM) to exploit multi-scale self-similarity and capture the useful correspondences at different scales.•PNCM considers two feature vectors as the normal feature and a random variable that is drawn from a standard Gaussian distribution by a full connection layer to alleviate the impact of noisy samples.
[Display omitted]
Automatic segmentation of cardiac magnetic resonance imaging (MRI) facilitates efficient and accurate volume measurement in clinical applications. However, due to anisotropic resolution, ambiguous borders and complicated shapes, existing methods suffer from the degradation of accuracy and robustness in cardiac MRI segmentation. In this paper, we propose an enhanced Deformable U-Net (DeU-Net) for 3D cardiac cine MRI segmentation, composed of three modules, namely Temporal Deformable Aggregation Module (TDAM), Enhanced Deformable Attention Network (EDAN), and Probabilistic Noise Correction Module (PNCM). TDAM first takes consecutive cardiac MR slices (including a target slice and its neighboring reference slices) as input, and extracts spatio-temporal information by an offset prediction network to generate fused features of the target slice. Then the fused features are also fed into EDAN that exploits several flexible deformable convolutional layers and generates clear borders of every segmentation map. A Multi-Scale Attention Module (MSAM) in EDAN is proposed to capture long range dependencies between features of different scales. Meanwhile, PNCM treats the fused features as a distribution to quantify uncertainty. Experimental results show that our DeU-Net achieves the state-of-the-art performance in terms of the commonly used evaluation metrics on the Extended ACDC dataset and competitive performance on other two datasets, validating the robustness and generalization of DeU-Net.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2022.102389</identifier><identifier>PMID: 35219940</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Borders ; Datasets ; Deep learning ; Deformation ; Formability ; Heart ; Heart - diagnostic imaging ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Imaging, Cine ; Modules ; MRI ; Neural Networks, Computer ; Robustness ; Segmentation ; Uncertainty ; Volume measurement</subject><ispartof>Medical image analysis, 2022-05, Vol.78, p.102389-102389, Article 102389</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright © 2022 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV May 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-62e2b8cd5da443fac98712c041a112b397d4fbe1d8799e211e1e748a3052b1803</citedby><cites>FETCH-LOGICAL-c387t-62e2b8cd5da443fac98712c041a112b397d4fbe1d8799e211e1e748a3052b1803</cites><orcidid>0000-0002-9795-7807 ; 0000-0001-5601-5912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S136184152200041X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35219940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Shunjie</creatorcontrib><creatorcontrib>Pan, Zixuan</creatorcontrib><creatorcontrib>Fu, Yu</creatorcontrib><creatorcontrib>Yang, Qianqian</creatorcontrib><creatorcontrib>Gao, Yuanxue</creatorcontrib><creatorcontrib>Yu, Tianbai</creatorcontrib><creatorcontrib>Shi, Yiyu</creatorcontrib><creatorcontrib>Zhuo, Cheng</creatorcontrib><title>DeU-Net 2.0: Enhanced deformable U-Net for 3D cardiac cine MRI segmentation</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>•A novel architecture DeU-Net 2.0, including Temporal Deformable Aggregation Module (TDAM), Enhanced Deformable Attention Network (EDAN) and Probabilistic Noise Correction Module (PNCM), was proposed for 3D cardiac cine MRI segmentation (average Dice score > 95% on the Extended ACDC dataset).•TDAM takes in consecutive MR slices as inputs to enhance the feature quality of the target slice by an offset prediction network and a temporal deformable convolutional layer.•EDAN exploits pyramidal architecture and high flexible deformable convolutional layers for accurate and robust segmentation.•In EDAN, we also propose Multi-Scale Attention Module (MSAM) to exploit multi-scale self-similarity and capture the useful correspondences at different scales.•PNCM considers two feature vectors as the normal feature and a random variable that is drawn from a standard Gaussian distribution by a full connection layer to alleviate the impact of noisy samples.
[Display omitted]
Automatic segmentation of cardiac magnetic resonance imaging (MRI) facilitates efficient and accurate volume measurement in clinical applications. However, due to anisotropic resolution, ambiguous borders and complicated shapes, existing methods suffer from the degradation of accuracy and robustness in cardiac MRI segmentation. In this paper, we propose an enhanced Deformable U-Net (DeU-Net) for 3D cardiac cine MRI segmentation, composed of three modules, namely Temporal Deformable Aggregation Module (TDAM), Enhanced Deformable Attention Network (EDAN), and Probabilistic Noise Correction Module (PNCM). TDAM first takes consecutive cardiac MR slices (including a target slice and its neighboring reference slices) as input, and extracts spatio-temporal information by an offset prediction network to generate fused features of the target slice. Then the fused features are also fed into EDAN that exploits several flexible deformable convolutional layers and generates clear borders of every segmentation map. A Multi-Scale Attention Module (MSAM) in EDAN is proposed to capture long range dependencies between features of different scales. Meanwhile, PNCM treats the fused features as a distribution to quantify uncertainty. Experimental results show that our DeU-Net achieves the state-of-the-art performance in terms of the commonly used evaluation metrics on the Extended ACDC dataset and competitive performance on other two datasets, validating the robustness and generalization of DeU-Net.</description><subject>Borders</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Deformation</subject><subject>Formability</subject><subject>Heart</subject><subject>Heart - diagnostic imaging</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Imaging, Cine</subject><subject>Modules</subject><subject>MRI</subject><subject>Neural Networks, Computer</subject><subject>Robustness</subject><subject>Segmentation</subject><subject>Uncertainty</subject><subject>Volume measurement</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLxDAQgIMovn-BIAEvXrpmkrRNBA_iG18geg5pOtUs21aTruC_N2vVgwdPmcx88-AjZAfYBBgUB9NJi7W3E844TxkulF4i6yAKyJTkYvk3hnyNbMQ4ZYyVUrJVsiZyDlpLtk6uT_Epu8OB8gk7pGfdi-0c1rTGpg-trWZIx3L6UnFKnQ1ppaPOd0hvH65oxOcWu8EOvu-2yEpjZxG3v99N8nR-9nhymd3cX1ydHN9kTqhyyAqOvFKuzmsrpWis06oE7pgEC8AroctaNhVCrUqtkQMgYCmVFSznFSgmNsn-OPc19G9zjINpfXQ4m9kO-3k0vBAy55rlOqF7f9BpPw9dui5RulBKaygTJUbKhT7GgI15Db614cMAMwvXZmq-XJuFazO6Tl2737PnVar-9vzITcDRCGCS8e4xmOg8Lvz6gG4wde__XfAJ0GiMDg</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Dong, Shunjie</creator><creator>Pan, Zixuan</creator><creator>Fu, Yu</creator><creator>Yang, Qianqian</creator><creator>Gao, Yuanxue</creator><creator>Yu, Tianbai</creator><creator>Shi, Yiyu</creator><creator>Zhuo, Cheng</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9795-7807</orcidid><orcidid>https://orcid.org/0000-0001-5601-5912</orcidid></search><sort><creationdate>202205</creationdate><title>DeU-Net 2.0: Enhanced deformable U-Net for 3D cardiac cine MRI segmentation</title><author>Dong, Shunjie ; Pan, Zixuan ; Fu, Yu ; Yang, Qianqian ; Gao, Yuanxue ; Yu, Tianbai ; Shi, Yiyu ; Zhuo, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-62e2b8cd5da443fac98712c041a112b397d4fbe1d8799e211e1e748a3052b1803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Borders</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Deformation</topic><topic>Formability</topic><topic>Heart</topic><topic>Heart - diagnostic imaging</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Imaging, Cine</topic><topic>Modules</topic><topic>MRI</topic><topic>Neural Networks, Computer</topic><topic>Robustness</topic><topic>Segmentation</topic><topic>Uncertainty</topic><topic>Volume measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Shunjie</creatorcontrib><creatorcontrib>Pan, Zixuan</creatorcontrib><creatorcontrib>Fu, Yu</creatorcontrib><creatorcontrib>Yang, Qianqian</creatorcontrib><creatorcontrib>Gao, Yuanxue</creatorcontrib><creatorcontrib>Yu, Tianbai</creatorcontrib><creatorcontrib>Shi, Yiyu</creatorcontrib><creatorcontrib>Zhuo, Cheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Shunjie</au><au>Pan, Zixuan</au><au>Fu, Yu</au><au>Yang, Qianqian</au><au>Gao, Yuanxue</au><au>Yu, Tianbai</au><au>Shi, Yiyu</au><au>Zhuo, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeU-Net 2.0: Enhanced deformable U-Net for 3D cardiac cine MRI segmentation</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2022-05</date><risdate>2022</risdate><volume>78</volume><spage>102389</spage><epage>102389</epage><pages>102389-102389</pages><artnum>102389</artnum><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>•A novel architecture DeU-Net 2.0, including Temporal Deformable Aggregation Module (TDAM), Enhanced Deformable Attention Network (EDAN) and Probabilistic Noise Correction Module (PNCM), was proposed for 3D cardiac cine MRI segmentation (average Dice score > 95% on the Extended ACDC dataset).•TDAM takes in consecutive MR slices as inputs to enhance the feature quality of the target slice by an offset prediction network and a temporal deformable convolutional layer.•EDAN exploits pyramidal architecture and high flexible deformable convolutional layers for accurate and robust segmentation.•In EDAN, we also propose Multi-Scale Attention Module (MSAM) to exploit multi-scale self-similarity and capture the useful correspondences at different scales.•PNCM considers two feature vectors as the normal feature and a random variable that is drawn from a standard Gaussian distribution by a full connection layer to alleviate the impact of noisy samples.
[Display omitted]
Automatic segmentation of cardiac magnetic resonance imaging (MRI) facilitates efficient and accurate volume measurement in clinical applications. However, due to anisotropic resolution, ambiguous borders and complicated shapes, existing methods suffer from the degradation of accuracy and robustness in cardiac MRI segmentation. In this paper, we propose an enhanced Deformable U-Net (DeU-Net) for 3D cardiac cine MRI segmentation, composed of three modules, namely Temporal Deformable Aggregation Module (TDAM), Enhanced Deformable Attention Network (EDAN), and Probabilistic Noise Correction Module (PNCM). TDAM first takes consecutive cardiac MR slices (including a target slice and its neighboring reference slices) as input, and extracts spatio-temporal information by an offset prediction network to generate fused features of the target slice. Then the fused features are also fed into EDAN that exploits several flexible deformable convolutional layers and generates clear borders of every segmentation map. A Multi-Scale Attention Module (MSAM) in EDAN is proposed to capture long range dependencies between features of different scales. Meanwhile, PNCM treats the fused features as a distribution to quantify uncertainty. Experimental results show that our DeU-Net achieves the state-of-the-art performance in terms of the commonly used evaluation metrics on the Extended ACDC dataset and competitive performance on other two datasets, validating the robustness and generalization of DeU-Net.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>35219940</pmid><doi>10.1016/j.media.2022.102389</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9795-7807</orcidid><orcidid>https://orcid.org/0000-0001-5601-5912</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-8415 |
ispartof | Medical image analysis, 2022-05, Vol.78, p.102389-102389, Article 102389 |
issn | 1361-8415 1361-8423 |
language | eng |
recordid | cdi_proquest_miscellaneous_2634529059 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Borders Datasets Deep learning Deformation Formability Heart Heart - diagnostic imaging Humans Image processing Image Processing, Computer-Assisted - methods Image segmentation Magnetic resonance imaging Magnetic Resonance Imaging - methods Magnetic Resonance Imaging, Cine Modules MRI Neural Networks, Computer Robustness Segmentation Uncertainty Volume measurement |
title | DeU-Net 2.0: Enhanced deformable U-Net for 3D cardiac cine MRI segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A00%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeU-Net%202.0:%20Enhanced%20deformable%20U-Net%20for%203D%20cardiac%20cine%20MRI%20segmentation&rft.jtitle=Medical%20image%20analysis&rft.au=Dong,%20Shunjie&rft.date=2022-05&rft.volume=78&rft.spage=102389&rft.epage=102389&rft.pages=102389-102389&rft.artnum=102389&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2022.102389&rft_dat=%3Cproquest_cross%3E2634529059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696889917&rft_id=info:pmid/35219940&rft_els_id=S136184152200041X&rfr_iscdi=true |